| 研究生: |
詹智勝 Chan, Chih-Sheng |
|---|---|
| 論文名稱: |
兩段式周轉輪系之動態分析 Dynamic Analysis of a Two-Stage Epicyclic Gear Train |
| 指導教授: |
崔兆棠
Choi, Siu-Tong |
| 共同指導教授: |
林博正
Lin, Bor-Jeng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 中文 |
| 論文頁數: | 54 |
| 中文關鍵詞: | 有限元素法 、周轉輪系 、軸承力 、自然頻率 |
| 外文關鍵詞: | Finite Element Method, Epicyclic Gear Train, Bearing Force, Natural Frequency |
| 相關次數: | 點閱:104 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究以有限元素法來分析兩段式周轉輪系之動態響應,並以Runge-Kutta法求解出數值解。假設系統中之太陽齒輪、行星齒輪、行星架皆為剛體,轉軸為撓性的Timoshenko樑,而軸承以線性彈簧及阻尼器來模擬。本文探討行星軸受到軸承支撐或無支撐,對系統的動態響應影響,並求出輸入端與輸出端之軸承力大小,以及系統的自然頻率。數值結果顯示,行星軸在有軸承支撐之情況下,系統的位移響應較小,輸入端與輸出端之軸承力也減小,而系統的自然頻率會提高。
In this thesis, dynamic response of a two-stage epicyclic gear train is analyzed by using the finite element method, and numerical results are obtained by the Runge-Kutta method. Sun gear, planetary gear, and planet carrier of the system are considered to be rigid. Rotating shafts are modeled as Timoshenko beams. Bearings are considered to be linear and modeled as spring-damper sets. The effects of the planetary shaft with or without bearing support on the dynamic response of the system are investigated. The bearing forces and natural frequencies of the system are calculated. Numerical results of this research show that if the planetary shaft is supported by a bearing, the displacement response of the system and the bearing force are reduced, and the natural frequencies of the system increase.
[1] Ruhl, R. L., and Booker, J. F., “A Finite Element Model for Distributed Parameter Turborotor System,” ASME Journal of Engineering for Industry, Vol. 94, 1972, pp. 126-132.
[2] Nelson, H. D., and McVaugh, J. M., “The Dynamics of Rotor-Bearing Systems Using Finite Elements,” ASME Journal of Engineering for Industry, Vol. 98, 1976, pp. 593-600.
[3] Nelson, H. D., “A Finite Rotating Shaft Element Using Timoshenko Beam Theory,” ASME Journal of Mechanical Design, Vol. 102, 1980, pp. 793-803.
[4] Dym, C. L., and Shames, I. H., Solid Mechanics–A Variational Approach, McGraw-Hill, New York, 1973.
[5] Eshleman, R. L., and Eubanks, R. A., “On the Critical Speeds of a Continuous Rotor,” ASME Journal of Engineering for Industry, Vol. 91, 1969, pp. 1180-1188.
[6] Greenhill, L. M., Bickford, W. B., and Nelson, H. D., “A Conical Beam Finite Element for Rotor Dynamic Analysis,” ASME Journal of Vibration, Acoustics, Stress, Reliability in Design, Vol. 107, 1985, pp. 421-430.
[7] Adams, M. L., “Nonlinear Dynamics of Flexible Multi-Bearing Rotors,” Journal of Sound and Vibration, Vol. 71, 1980, pp. 129-144.
[8] Hassenpflug, H. L., Flack, R. D., and Gunter E. J., “Influence of Acceleration on the Critical Speed of a Jeffcott Rotor,” ASME Journal of Engineering for Power, Vol. 103, 1981, pp. 108-113.
[9] Lee, A. C., and Kang Y., “Transient Analysis of an Asymmetric Rotor-Bearing System during Acceleration,” ASME Journal of Engineering for Industry, Vol. 114, 1992, pp. 465-475.
[10] Ozgüven, N. H., and Ozkan, L. Z., “Whirl Speeds and Unbalance Response of Multi-bearing Rotors Using Finite Elements,” ASME Journal of Vibration and Acoustics, Vol. 106, 1984, pp. 72-79.
[11] 黃冠維,蔡得民,可獨立控制傳動機構,中華民國專利,發明第I329173號,2010。
[12] 林重琪,可獨立控制傳動機構之實證,國立中山大學碩士論文,2011。
[13] 廖偉向,並聯型獨立可控制傳動機構之功率流實證,國立中山大學碩士論文,2012。
[14] Hibbeler, R. C., Engineering Mechanics Dynamics, Pearson Prentice Hall, Upper Saddle River, 2007.
[15] 黃忠立,轉子-軸承系統在多臨界轉速限制下之輕量化設計,國立成功大學航空太空工程研究所碩士論文,1987。
[16] 阮競揚,含橫向裂縫的轉子軸承系統之動態特性分析,國立成功大學航空太空工程研究所碩士論文,1997。
[17] 張哲榮,齒輪轉子軸承系統動態特性之研究,國立成功大學航空太空工程研究所博士論文,1997。