| 研究生: |
德古卡 Pineda, Carlos Fernando Delgado |
|---|---|
| 論文名稱: |
利用本體論發展預製住宅專案之風險管理架構–以尼加拉瓜為例 Using Ontology to Develop the Risk Management Framework for Prefabricated Housing Projects in Nicaragua |
| 指導教授: |
馮重偉
Feng, Chung-Wei |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 英文 |
| 論文頁數: | 106 |
| 外文關鍵詞: | Risk, Risk Management, Prefabrication, Extraction Knowledge, Ontology |
| 相關次數: | 點閱:77 下載:6 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
Risks are ever-present in all aspects of life, and the construction industry is no exception. One of the most important tasks that pertains to a project manager is how to effectively manage project risks and, in particular, schedule risks that may cause delays. This duty is very intricate not only due to the nature of the risk itself, but because the project management team must have a complete comprehension of their risk factors, origin and consequences.
Risks also depend in the nature of the construction project. In order to meet the global demand of housing and population growth, new technologies and procedures in construction have emerged in order to deliver on those needs. One such technology is prefabrication which combines both manufacturing and construction procedures to deliver a residential solution in a more expedite manner. The main drawback, however, is that the implementation of prefabricated houses in the construction industry brings about more complexity to risk management practices, as it merges risks from a manufacturing perspective.
The more knowledge and experience project managers can have, in conjunction with a proper methodology for risk identification, the more effective and efficient the risk management procedure can be. Consequently, the extraction of relevant knowledge and key features becomes a fundamental step towards competent risk management procedures. More specifically, this research conducts the development of an ontology-based risk management framework to improve the effectiveness of risk management of prefabricated housing projects.
In order to establish the framework, the methodology for ontology development was implemented and merges the information from the risk management practices and the various stakeholders involved in that process with the data obtained from the operational documents of the prefabricated housing production (PHP) project. The framework was validated through a case study analysis, which confirms a satisfactory inclusion of the knowledge gathered. The outcome of the framework is the ease for the project management team to pin point risk factors, analyze them and determine the potential project risks. This is demonstrated by the case study’s result, as it shows the ability of the proposed framework to identify features that show the trigger events of risk factors and their influence on the schedule of the project.
Beydoun, G., Lopez-Lorca, A. A., García-Sánchez, F., & Martínez-Béjar, R. (2011). How do we measure and improve the quality of a hierarchical ontology? Journal of Systems and Software, 84(12), 2363-2373. doi:10.1016/j.jss.2011.07.010
Chen, F., Wang, H., Xu, G., Ji, H., Ding, S., & Wei, Y. (2020). Data-driven safety enhancing strategies for risk networks in construction engineering. Reliability Engineering & System Safety, 197, 11. doi:10.1016/j.ress.2020.106806
de Farias, T. M., Roxin, A., & Nicolle, C. (2016). SWRL rule-selection methodology for ontology interoperability. Data & Knowledge Engineering, 105, 53-72. doi:10.1016/j.datak.2015.09.001
Dziadosz, A., & Rejment, M. (2015). Risk Analysis in Construction Project - Chosen Methods. Procedia Engineering, 122, 258-265. doi:10.1016/j.proeng.2015.10.034
Hinze, J. W. (2012). Construction Planning and Scheduling (4 ed.).
Li, C. Z., Hong, J., Fan, C., Xu, X., & Shen, G. Q. (2018). Schedule delay analysis of prefabricated housing production: A hybrid dynamic approach. Journal of Cleaner Production, 195, 1533-1545. doi:10.1016/j.jclepro.2017.09.066
Li, C. Z., Shen, G. Q., Xu, X., Xue, F., Sommer, L., & Luo, L. (2017). Schedule risk modeling in prefabrication housing production. Journal of Cleaner Production, 153, 692-706. doi:10.1016/j.jclepro.2016.11.028
Li, M., Yu, H., Jin, H., & Liu, P. (2018). Methodologies of safety risk control for China’s metro construction based on BIM. Safety Science, 110, 418-426. doi:10.1016/j.ssci.2018.03.026
Li, X., Shen, G. Q., Wu, P., & Yue, T. (2019). Integrating Building Information Modeling and Prefabrication Housing Production. Automation in Construction, 100, 46-60. doi:10.1016/j.autcon.2018.12.024
Lu, W. S., Chen, K., Xue, F., & Pan, W. (2018). Searching for an optimal level of prefabrication in construction: An analytical framework. Journal of Cleaner Production, 201(201), 236-245. doi:10.1016/j.jclepro.2018.07.319
Moshodi, T., Coetzee, C., & Fourie, K. (2016). Inadequate stakeholder management and its effect on a coherent sinkhole risk management strategy: The case of the Merafong Local Municipality, South Africa. Jamba, 8(1), 265. doi:10.4102/jamba.v8i1.265
Odimabo, O., & Oduoza, C. F. (2018). Guidelines to Aid Project Managers in Conceptualising and Implementing Risk Management in Building Projects. Procedia Manufacturing, 17, 515-522. doi:10.1016/j.promfg.2018.10.091
Pérez R, W. (2019, 5/10/2019). Déficit de viviendas, la crisis silenciosa de Nicaragua que crece cada año. EFE. Retrieved from https://www.efe.com/efe/america/economia/deficit-de-viviendas-la-crisis-silenciosa-nicaragua-que-crece-cada-ano/20000011-4080199
Pučko, Z., Šuman, N., & Rebolj, D. (2018). Automated continuous construction progress monitoring using multiple workplace real time 3D scans. Advanced Engineering Informatics, 38, 27-40. doi:10.1016/j.aei.2018.06.001
Rios-Alvarado, A. B., Lopez-Arevalo, I., & Sosa-Sosa, V. J. (2013). Learning concept hierarchies from textual resources for ontologies construction. Expert Systems with Applications, 40(15), 5907-5915. doi:10.1016/j.eswa.2013.05.005
Roa Flores, O. A. (2018). An Ontology-based Construction Operations Feature Extraction Framework for Building Project Schedule Risk Monitoring Dataset. (Master in Civil Engineering and Management), National Cheng Kung University, Tainan, Taiwan.
Santoso, H. A., Haw, S.-C., & Abdul-Mehdi, Z. T. (2011). Ontology extraction from relational database: Concept hierarchy as background knowledge. Knowledge-Based Systems, 24(3), 457-464. doi:10.1016/j.knosys.2010.11.003
Serpella, A. F., Ferrada, X., Howard, R., & Rubio, L. (2014). Risk Management in Construction Projects: A Knowledge-based Approach. Procedia - Social and Behavioral Sciences, 119, 653-662. doi:10.1016/j.sbspro.2014.03.073
Soman, R. K., Raphael, B., & Varghese, K. (2017). A System Identification Methodology to monitor construction activities using structural responses. Automation in Construction, 75, 79-90. doi:10.1016/j.autcon.2016.12.006
Srinivasan, N. P., & Dhivya, S. (2020). An empirical study on stakeholder management in construction projects. Materials Today: Proceedings, 21, 60-62. doi:10.1016/j.matpr.2019.05.361
Steinhardt, D. A., & Manley, K. (2016). Adoption of prefabricated housing–the role of country context. Sustainable Cities and Society, 22, 126-135. doi:10.1016/j.scs.2016.02.008
Szymański, P. (2017). Risk management in construction projects. Procedia Engineering, 208, 174-182. doi:10.1016/j.proeng.2017.11.036
Tserng, H. P., Yin, S. Y. L., Dzeng, R. J., Wou, B., Tsai, M. D., & Chen, W. Y. (2009). A study of ontology-based risk management framework of construction projects through project life cycle. Automation in Construction, 18(7), 994-1008. doi:10.1016/j.autcon.2009.05.005
Vegetti, M., Roldán, L., Gonnet, S., Leone, H., & Henning, G. (2016). A framework to represent, capture, and trace ontology development processes. Engineering Applications of Artificial Intelligence, 56, 230-249. doi:10.1016/j.engappai.2016.10.001
Winters, L. (2009). Deadliest catch: risk identification in the vast Bering Sea. Paper presented at the PMI® Global Congress 2009, Orland, FL, USA. https://www.pmi.org/learning/library/risk-identification-overcoming-barriers-6684
Xing, X. J., Zhong, B. T., Luo, H. B., Li, H., & Wu, H. T. (2019). Ontology for safety risk identification in metro construction. Computers in Industry, 109, 14-30. doi:10.1016/j.compind.2019.04.001
Xu, Q., Chong, H.-Y., & Liao, P.-C. (2019). Collaborative information integration for construction safety monitoring. Automation in Construction, 102, 120-134. doi:10.1016/j.autcon.2019.02.004
Yang, B. (2020). Construction of logistics financial security risk ontology model based on risk association and machine learning. Safety Science, 123, 11. doi:10.1016/j.ssci.2019.08.005
Yang, L., Cormican, K., & Yu, M. (2019). Ontology-based systems engineering: A state-of-the-art review. Computers in Industry, 111, 148-171. doi:10.1016/j.compind.2019.05.003
Yuan, J., Chen, K., Li, W., Ji, C., Wang, Z., & Skibniewski, M. J. (2018). Social network analysis for social risks of construction projects in high-density urban areas in China. Journal of Cleaner Production, 198, 940-961. doi:10.1016/j.jclepro.2018.07.109
Zhang, W., Lee, M. W., Jaillon, L., & Poon, C.-S. (2018). The hindrance to using prefabrication in Hong Kong's building industry. Journal of Cleaner Production, 204, 70-81. doi:10.1016/j.jclepro.2018.08.190
Zhao, D., McCoy, A. P., Kleiner, B. M., Mills, T. H., & Lingard, H. (2016). Stakeholder Perceptions of Risk in Construction. Saf Sci, 82, 111-119. doi:10.1016/j.ssci.2015.09.002