簡易檢索 / 詳目顯示

研究生: 鄭東展
Cheng, Tung - Chan
論文名稱: 從豬糞廢水中回收鳥糞石之反應動力學:與調節過飽和率、磷回收率和晶體尺寸的關係
Kinetics of Recovering Struvite from Swine Wastewater: Correlation with Regulating Supersaturation, Phosphorus Recovery and Crystal Size
指導教授: 陳?如
Chen, Wan-Ru
學位類別: 碩士
Master
系所名稱: 工學院 - 環境工程學系
Department of Environmental Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 英文
論文頁數: 84
中文關鍵詞: 豬糞廢水鳥糞石反應動力學反應速率常數過飽和率鳥糞石大小
外文關鍵詞: swine wastewater, struvite, kinetic, rate constant, SSR, struvite size
相關次數: 點閱:77下載:10
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 豬糞廢水中含有氨氮(約幾百到幾千mg/L)、正磷酸鹽(約幾十到幾百mg/L)以及少量的鎂,在臺灣,大部分豬糞廢水在經過廢水處理後即被排放。近年來,已有部分豬糞廢水以厭氧消化進行能源回收,本研究的主要目標為回收豬糞廢水中的氮、磷,利用從海水淡化鹵水中回收的Mg(OH)2作為Mg2+來源,將豬糞廢水中正磷酸鹽和氨氮沉澱為鳥糞石,以處理豬糞廢水。本研究將探討鳥糞石的生成反應動力學,了解反應速率常數(k)和過飽和度率(SSR)之間的關係,並評估影響鳥糞石的結晶大小的因子,包含混和方式、攪拌速度、分段加藥、導電度及有機質含量(TOC)。
    本研究使用磁力攪拌進行合成廢水和豬糞廢水的反應動力學探討。此外,在合成廢水的反應動力學實驗中,本研究藉由控制N:P:Mg的莫爾比模擬反應為假一階。來了解在低磷鎂濃度的反應速率以及反應階數。根據結果,鳥糞石的生成動力學為假一階反應,但k卻隨不同的SSR而變化。而SSR會受到氨氮、正磷酸鹽、鎂的濃度和pH值的影響,進一步發現SSR與鳥糞石反應的k有正相關。為了讓k和SSR的相關性,能做為處理豬糞廢水設計參數的提供,本研究將比較豬糞廢水和合成廢水的相關性結果。根據回歸分析後,得到合成廢水中k和SSR的趨勢線與豬糞廢水相似。因此,證實可以藉由調整SSR來控制反應速率,未來可以應用在鳥糞石生成反應中。
    除此之外,鳥糞石的大小對於作為肥料再利用也很重要。因此,本研究將嘗試使用混凝攪拌器和分次加入Mg2+來增加鳥糞石的大小。本研究的結果將被用來優化鳥糞石生成的大小。

    為了提高合成廢水中鳥糞石的大小,其過程會受到很多因素的影響。藉由不同的攪拌器發現,混凝攪拌器使比磁力攪拌器能產生更大的鳥糞石從小於100 μm到大於100 μm。在分8次加入Mg2+的實驗,鳥糞石的平均大小可以大於100 μm,最大粒徑為519 μm。在不同濃度的TOC的實驗中,無論濃度從5000 ppm到20000 ppm,鳥糞石的大小都小於35 μm。在多種金屬離子(Mg2+、Na+、K+、Ca2+)作為背景溶液改變電導度與豬糞廢水相同的實驗,鳥糞石的大小也沒有增加到70 μm以上。本研究發現在豬糞廢水中,即使使用混凝攪拌器並分次加入Mg2+,其粒徑皆小於50 μm。根據研究結果推測可能的原因為TOC的濃度超過5000 ppm以及豬糞廢水中的其他離子(如Na+、K+、Ca2+)抑制了鳥糞石的生長。

    There is rich nitrogen (from several hundred to several thousand mg/L), phosphorus (from several tens to several hundred mg/L), and slight magnesium in swine wastewater. Most swine wastewaters were discharged after treating wastewater treatment facilities in Taiwan. In recent years, swine wastewater was recycled by anaerobic digestion.
    The research objectives of this study are recycling the phosphate and ammonia from swine wastewater by using the Mg(OH)2 recovered from the brine as an Mg2+ source to precipitate phosphate and ammonia into struvite to treat the swine wastewater. This study has discussed the kinetics of struvite formation to find the best way of struvite precipitation, figure out what kind of reaction it is, and the correlation between rate constants (k) and supersaturation ratio (SSR). In the end, assessing the factors that affect the struvite size, including the different stirrer, stirrer speed, adding Mg2+ in several separate times, conductivity, and the concentration of total organic carbons (TOC).
    The experiment was divided into using a magnetic stir bar and jar test stirring. It was discussed the reaction kinetic of synthetic wastewater and swine wastewater was applied by the magnetic stir bar. Furthermore, in the synthetic wastewater kinetic experiment, this study tested the reaction rate by controlling the molar ratio of N:P: Mg to model that the reaction was pseudo-first-order then figure out the order of the reaction. The results showed that the kinetic of struvite formation was a pseudo-first-order reaction. Besides, the results indicated that the rate constant varied with different SSR. SSR was affected by the concentration of ammonia nitrogen, orthophosphate, magnesium, and pH, which is further found to have a positive correlation with k of struvite formation. To apply the correlation between k and SSR to design the treatment tank for swine wastewater, this study compared the correlation results from swine wastewater and synthetic wastewater. The trend line of k and SSR in the synthetic wastewater obtained from the regression analysis was similar to the swine wastewater. Therefore, it could be used as a future application to control the struvite formation reaction rate by adjusting SSR.
    In addition, struvite size was also important to reuse as fertilizer. Therefore, this study was tried to increase the struvite size by using the jar test stirring and adding Mg2+ in several times. All the results were utilized to optimize the formation size of struvite.
    For the enhancement of struvite size in synthetic wastewater, struvite size was affected by many factors. By different stirrers, jar test stirring makes the struvite larger than the magnetic stir bar from smaller than 100 μm to larger than 100 μm. By adding Mg2+ in eight times, the average size of struvite could be larger than 100 μm and the largest size is 519 μm. By different concentrations of total organic carbon, no matter the concentration was changed from 5000 ppm to 20000 ppm, the struvite size was smaller than 35 μm. By changing conductivity with multiple metal ions (Mg2+, Na+, K+, Ca2+) to the same conductivity as swine wastewater, the struvite size didn’t increase to over 70 μm as well. In this study, it was found that the struvite size was smaller than 50 μm even when using the jar test stirring and adding Mg2+ in several times in swine wastewater. The possible reason is that the organic matter and other metal ions (e.g., Na+, K+, Ca2+) in the swine wastewater inhibited the growth of struvite.

    摘要 i Abstract iii 誌謝 v Contents vi Figures ix Tables xiii Chapter 1 Introduction 1 Chapter 2 Literature review 3 2.1 Characteristics and treatments of swine wastewater 3 2.1.1 Characteristics of swine wastewater 3 2.1.2 Treatments of swine wastewater 3 2.2 Struvite (Magnesium ammonia phosphate, MAP) 4 2.2.1 Struvite formation 4 2.2.2 Effect of pH 6 2.2.3 Effect of supersaturation ratio 8 2.2.4 Effect of organic matter on struvite formation 10 2.3 Kinetic of struvite formation 11 2.4 Size of struvite 12 2.4.1 Smaller particle size (<1 mm) 12 2.4.2 Larger particle size (>1 mm) 13 2.5 Struvite as a fertilizer 16 Chapter 3 Materials and Methods 17 3.1 Research framework 17 3.2 Chemicals 18 3.3 Sample collection and preparation 19 3.3.1 Sampling sites 19 3.3.2 Recovering Mg(OH)2 from the brine 20 3.3.3 Qualitative analysis of dissolved organic matter 20 3.4 Struvite formation kinetic experiments 21 3.4.1 Struvite formation kinetic in synthetic wastewater 21 3.4.2 Struvite formation kinetic in swine wastewater 23 3.5 Experiments of size growth and yield of struvite 24 3.5.1 The effect of mixing process 27 3.5.2 Adding Mg2+ in several separate times 27 3.5.3 The effect of stirrer speed 27 3.5.4 The effect of TOC concentration with struvite size 27 3.5.5 The effect of conductivity with struvite size 28 3.6 Analysis and instruments 29 3.6.1 Liquid samples analysis 29 3.6.2 Precipitation analysis 30 3.6.3 Characterization method for organic matter 32 3.7 Data analysis 34 3.7.1 Supersaturation ratio 34 3.7.2 Kinetic rate 34 3.7.3 Struvite yield and purity 35 Chapter 4 Result and Discussion 37 4.1 Water quality of swine wastewater, magnesium hydroxide, and characteristic of organic matters 37 4.2 Struvite formation kinetic experiments 39 4.2.1 Struvite formation kinetic in synthetic wastewater 39 4.2.2 Struvite formation kinetic in swine wastewater 46 4.2.3 Comparison of struvite formation kinetic with swine wastewater and synthetic wastewater 57 4.3 Experiments of size growth and yield of struvite 60 4.3.1 The effect of the mixing process 60 4.3.2 Adding Mg2+ in several separate times 62 4.3.3 The effect of stirrer speed with struvite size 67 4.3.4 The effect of TOC concentration with struvite size 69 4.3.5 The effect of conductivity with struvite size 72 4.3.6 Comparison of the struvite size growth with different independent variables 76 Chapter 5 Conclusion and Suggestion 79 5.1 Conclusion 79 5.2 Suggestion 80 REFERENCE 81 APPENDIX 84

    行政院環保署. (2017). 畜牧糞尿資源化. Retrieved from https://water.epa.gov.tw/Page1_3.aspx
    Adnan, A., Mavinic, D. S., & Koch, F. A. (2003). Pilot-scale study of phosphorus recovery through struvite crystallization examining the process feasibility. Journal of Environmental Engineering and Science, 2(5), 315-324
    Banks, E., Chianelli, R., & Korenstein, R. (1975). Crystal chemistry of struvite analogs of the type MgMPO4. 6H2O (M+= potassium (1+), rubidium (1+), cesium (1+), thallium (1+), ammonium (1+). Inorganic Chemistry, 14(7), 1634-1639
    Barnes, D., Li, X., & Chen, J. (2007). Determination of suitable pretreatment method for old-intermediate landfill leachate. Environmental Technology, 28(2), 195-203
    Bhuiyan, M. I. H., Mavinic, D. S., & Koch, F. A. (2008). Thermal decomposition of struvite and its phase transition. Chemosphere, 70(8), 1347-1356
    Burke, E. A., & Ferraris, G. (2004). New minerals and nomenclature modifications approved in 2003 by the Commission on New Minerals and Mineral Names, International Mineralogical Association. The Canadian Mineralogist, 42(3), 905-913
    Burke, S., Heathwaite, L., & Preedy, N. (2004). Transfer of phosphorus to surface waters; eutrophication. Phosphorus in environmental technology: Principles and applications, 120-146
    Carstea, E. M., Baker, A., Bieroza, M., & Reynolds, D. (2010). Continuous fluorescence excitation–emission matrix monitoring of river organic matter. Water Research, 44(18), 5356-5366
    Chen, W., Westerhoff, P., Leenheer, J. A., & Booksh, K. (2003). Fluorescence Excitation−Emission Matrix Regional Integration to Quantify Spectra for Dissolved Organic Matter. Environmental Science & Technology, 37(24), 5701-5710
    Comly, H. H. (1945). CYANOSIS IN INFANTS CAUSED BY NITRATES IN WELL WATER. Journal of the American Medical Association, 129(2), 112-116
    Corre, L., Valsami-Jones, E., Hobbs, P., & Parsons, S. A. (2005). Impact of calcium on struvite crystal size, shape and purity. Journal of crystal growth, 283(3-4), 514-522
    Crutchik, D., & Garrido, J. M. (2016). Kinetics of the reversible reaction of struvite crystallisation. Chemosphere, 154, 567-572
    Fattah, K. P., Mavinic, D. S., & Koch, F. A. (2012). Influence of Process Parameters on the Characteristics of Struvite Pellets. Journal of Environmental Engineering, 138(12), 1200-1209
    Fernandez Lozano, J., Colmenares, A. R., & Rosas, D. (1999). A novel process for the production of multinutrient phosphatic base fertilizers from seawater bittern and phosphoric acid. INTERCIENCIA-CARACAS-, 24, 317-320
    Foletto, E. L., Santos, W. R. B. D., Jahn, S. L., Bassaco, M. M., Mazutti, M. A., Cancelier, A., & Gündel, A. (2013). Organic pollutants removal and recovery from animal wastewater by mesoporous struvite precipitation. Desalination and Water Treatment, 51(13-15), 2776-2780
    Hao, X.-D., Wang, C.-C., Lan, L., & Van Loosdrecht, M. C. M. (2008). Struvite formation, analytical methods and effects of pH and Ca2 + Water Science and Technology, 58(8), 1687-1692
    Huang, H., Xu, C., & Zhang, W. (2011). Removal of nutrients from piggery wastewater using struvite precipitation and pyrogenation technology. Bioresource Technology, 102(3), 2523-2528
    Hutnik, N., Wierzbowska, B., Piotrowski, K., & Matynia, A. (2013). Continuous reaction crystallization of struvite from solution containing phosphate (V) and nitrate (V) ions. Online J. Sci. Technol, 3(2)
    Kim, T.-H., Nam, Y.-K., & Joo Lim, S. (2014). Effects of ionizing radiation on struvite crystallization of livestock wastewater. Radiation Physics and Chemistry, 97, 332-336
    Kochany, J., & Lipczynska-Kochany, E. (2009). Utilization of landfill leachate parameters for pretreatment by Fenton reaction and struvite precipitation—a comparative study. Journal of Hazardous Materials, 166(1), 248-254
    Kwon, G., Kang, J., Nam, J.-H., Kim, Y.-O., & Jahng, D. (2021). Struvite production from anaerobic digestate of piggery wastewater using ferronickel slag as a magnesium source. Environmental Technology, 42(3), 429-443
    Le Corre, K. S., Valsami-Jones, E., Hobbs, P., & Parsons, S. A. (2005). Impact of calcium on struvite crystal size, shape and purity. Journal of crystal growth, 283(3-4), 514-522
    Le Corre, K. S., Valsami-Jones, E., Hobbs, P., & Parsons, S. A. (2007a). Kinetics of Struvite Precipitation: Effect of the Magnesium Dose on Induction Times and Precipitation Rates. Environmental Technology, 28(12), 1317-1324
    Le Corre, K. S., Valsami-Jones, E., Hobbs, P., & Parsons, S. A. (2007b). Struvite crystallisation and recovery using a stainless steel structure as a seed material. Water Research, 41(11), 2449-2456
    Le, V.-G., Vo, D.-V. N., Nguyen, N.-H., Shih, Y.-J., Vu, C.-T., Liao, C.-H., & Huang, Y.-H. (2021). Struvite recovery from swine wastewater using fluidized-bed homogeneous granulation process. Journal of Environmental Chemical Engineering, 9(3), 105019
    Liu, X., Wen, G., Hu, Z., & Wang, J. (2018). Coupling effects of pH and Mg/P ratio on P recovery from anaerobic digester supernatant by struvite formation. Journal of Cleaner Production, 198, 633-641
    Liu, Y., Kwag, J.-H., Kim, J.-H., & Ra, C. (2011). Recovery of nitrogen and phosphorus by struvite crystallization from swine wastewater. Desalination, 277(1), 364-369
    Matthews, B., Jones, A., Theodorou, N., & Tudhope, A. (1996). Excitation-emission-matrix fluorescence spectroscopy applied to humic acid bands in coral reefs. Marine Chemistry, 55(3-4), 317-332
    Mullin, J. W. (2001). Crystallization: Elsevier.
    Nelson, N. O., Mikkelsen, R. L., & Hesterberg, D. L. (2003). Struvite precipitation in anaerobic swine lagoon liquid: effect of pH and Mg:P ratio and determination of rate constant. Bioresource Technology, 89(3), 229-236
    Ohlinger, K. N., Young, T. M., & Schroeder, E. D. (1998). Predicting struvite formation in digestion. Water Research, 32(12), 3607-3614
    Parsons, S. A., & Doyle, J. D. (2004). Struvite scale formation and control. Water Science and Technology, 49(2), 177-182
    Pastor, L., Mangin, D., Barat, R., & Seco, A. (2008). A pilot-scale study of struvite precipitation in a stirred tank reactor: Conditions influencing the process. Bioresource Technology, 99(14), 6285-6291
    Pastor, L., Marti, N., Bouzas, A., & Seco, A. (2008). Sewage sludge management for phosphorus recovery as struvite in EBPR wastewater treatment plants. Bioresource Technology, 99(11), 4817-4824
    Pretty, J. N., Mason, C. F., Nedwell, D. B., Hine, R. E., Leaf, S., & Dils, R. (2003). Environmental Costs of Freshwater Eutrophication in England and Wales. Environmental Science & Technology, 37(2), 201-208
    Quintana, M., Sanchez, E., Colmenarejo, M., Barrera, J., Garcia, G., & Borja, R. (2005). Kinetics of phosphorus removal and struvite formation by the utilization of by-product of magnesium oxide production. Chemical Engineering Journal, 111(1), 45-52
    Rahaman, M. S., Ellis, N., & Mavinic, D. S. (2008). Effects of various process parameters on struvite precipitation kinetics and subsequent determination of rate constants. Water Science and Technology, 57(5), 647-654
    Rahman, M. M., Liu, Y., Kwag, J.-H., & Ra, C. (2011). Recovery of struvite from animal wastewater and its nutrient leaching loss in soil. Journal of Hazardous Materials, 186(2), 2026-2030
    Randall, D. J., & Tsui, T. K. N. (2002). Ammonia toxicity in fish. Marine Pollution Bulletin, 45(1), 17-23
    Ryu, H.-D., Lim, C.-S., Kim, Y.-K., Kim, K.-Y., & Lee, S.-I. (2012). Recovery of struvite obtained from semiconductor wastewater and reuse as a slow-release fertilizer. Environmental Engineering Science, 29(6), 540-548
    Saidou, H., Ben Moussa, S., & Ben Amor, M. (2009). Influence of airflow rate and substrate nature on heterogeneous struvite precipitation. Environmental Technology, 30(1), 75-83
    Shin, H. S., & Lee, S. M. (1998). Removal of Nutrients in Wastewater by using Magnesium Salts. Environmental Technology, 19(3), 283-290
    Song, Y., Yuan, P., Zheng, B., Peng, J., Yuan, F., & Gao, Y. (2007). Nutrients removal and recovery by crystallization of magnesium ammonium phosphate from synthetic swine wastewater. Chemosphere, 69(2), 319-324
    Suzuki, K., Tanaka, Y., Osada, T., & Waki, M. (2002). Removal of phosphate, magnesium and calcium from swine wastewater through crystallization enhanced by aeration. Water Research, 36(12), 2991-2998
    Türker, M., & Çelen, I. (2007). Removal of ammonia as struvite from anaerobic digester effluents and recycling of magnesium and phosphate. Bioresource Technology, 98(8), 1529-1534
    Uysal, A., Yilmazel, Y. D., & Demirer, G. N. (2010). The determination of fertilizer quality of the formed struvite from effluent of a sewage sludge anaerobic digester. Journal of Hazardous Materials, 181(1), 248-254
    Wang, C. C., Hao, X. D., Guo, G. S., & Van Loosdrecht, M. C. M. (2010). Formation of pure struvite at neutral pH by electrochemical deposition. Chemical Engineering Journal, 159(1), 280-283
    Zhang, T., Ding, L., & Ren, H. (2009). Pretreatment of ammonium removal from landfill leachate by chemical precipitation. Journal of Hazardous Materials, 166(2), 911-915
    Zhao, T.-L., Li, H., Huang, Y.-R., Yao, Q.-Z., Huang, Y., & Zhou, G.-T. (2019). Microbial mineralization of struvite: Salinity effect and its implication for phosphorus removal and recovery. Chemical Engineering Journal, 358, 1324-1331
    Zhou, Z., Hu, D., Ren, W., Zhao, Y., Jiang, L.-M., & Wang, L. (2015). Effect of humic substances on phosphorus removal by struvite precipitation. Chemosphere, 141, 94-99

    下載圖示 校內:2023-08-28公開
    校外:2023-08-28公開
    QR CODE