| 研究生: |
林子琦 Lin, Tzu-Chi |
|---|---|
| 論文名稱: |
發光二極體汽車頭燈之三維熱傳分析及測試 The 3-D Numerical and Experimental Heat Transfer of LED Car Headlamp |
| 指導教授: |
張錦裕
Jang, Jiin-Yuh |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系碩士在職專班 Department of Mechanical Engineering (on the job class) |
| 論文出版年: | 2010 |
| 畢業學年度: | 98 |
| 語文別: | 中文 |
| 論文頁數: | 106 |
| 中文關鍵詞: | 發光二極體 、自然對流 、散熱鰭片 |
| 外文關鍵詞: | LED, natural convection, heat rectangular fin |
| 相關次數: | 點閱:89 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究利用商業套裝軟體CFD-RC,來探討不同鰭片數(N=2、4、6、8)運用於LED汽車頭燈之散熱效益。考量燈具在應用上受到防塵、防水及防震的限制,本燈具的散熱設計採用被動式散熱方式。在考慮自然對流及輻射的狀態下進行模擬,並以實驗的數據來加以驗證。LED輸入功率為10.8W時,將實驗與數值模擬數據比較,其溫度誤差值約為6%,因此可藉由數值模擬來探討LED功率為15W時,不同鰭片數之散熱情形。以相同鰭片作為散熱系統,LED輸入功率分別為10.8W及15W時,接面溫度隨功率增加而遽增。可藉由LED之相關資訊,得知LED的亮度將伴隨著接面溫度升高而導致光衰的現象增加及波長偏移。
由於鰭片表面因溫度梯度而產生自然對流,當鰭片間之間距縮小時,會導致空氣流動速度降低,並影響其LED散熱效益而造成波長偏移及亮度衰退,使得光源所發出的白光無法滿足汽車頭燈法規之要求。從數值分析得知,LED約88%的熱能是藉由散熱鰭片將熱能傳導至外部空氣,欲使LED有良好的散熱效益,需考慮其散熱系統的設計。
In this research, the commercial solver, CFD-ACE+, had been used to study the effects on different number of fins in Light emitting diode (LED). Due to the limitation of waterproof, dustproof and shockproof, the thermal dissipation of this headlamp was considered as passive cooling device. LED headlamp was simulated with four different types of heat fins under the condition of natural convection and radiation, and these simulation results were compared with the experimental data. When the input power was 10.8W, the error between simulation and experiment is only 6%. So it is confirmed that the simulation results can represent experimental data. When input power were 10.8W and 15W, the results shown that the temperature of LED raised as input power increased. According to the LED’s technical datasheet, the optical output of LED accompanied the junction temperature raised then which caused luminous flux reduction and wave length shift.
The temperature gradient on fin surface will bring about natural convection. If the gaps of fins decrease, velocity of the air flow is decreased and results in the decrease of heat dissipation. If the fins can not spread out the heat generates by LED, white light will not meet the regulation requirement of the automotive headlamp and shift in the emission wave length. The numerical investigation shown that heat generated by LED can diffuse from heat fin to air about 88%, so it can make a conclusion that the design of fins has a greatly influence on efficiency of heat diffusion.
1.周志敏、周紀海、紀愛華, “LED驅動電路設計與應用”,五南圖書出版公司,2008。
2.陳隆建, “發光二極體之原理與製程”,全華科技圖書股份有限公司,2006。
3.Philips Lumileds Lighting Company
4.Zukausks, A., Shur, M. S. and Caska, R., “Introduction to Solid-State Lighting”, New York, 2002
5.Muthu, S., Schuurmans, F. J. P. and Pashley, M. D., “Red, Green and Blue LEDs for White Light Illumination ”, IEEE J.Select. Topics Quantum, Electron., pp333-338, 2002
6.Karcher, C., “Thermal Analysis in Automotive Components”, Darmstadt University of Technology, ISAL A17.1 pp450-459, 2005
7.Narendran, N. and Gu, Y. M., “Life of LED-Based White Light Sources”, IEEE Journal of Display Technology, Vol.1, pp.167-171, 2005
8.Sheu, G. J., Hwu, F. S., Tu, S. H., Chen, W. T., Chang, J. Y. and Chen, J. C., “The heat dissipation performance of LED applied a MHP”, Proc. of SPIE Vol. 5941, 2005
9.Huber, R., “Thermal Management of Automotive Lamps based on LED Technology”, Darmstadt University of Technology, ISAL A17.4, pp489-498, 2005
10.Jang, S. and Shin, M. W., “Thermal Analysis of LED Arrays for Automotive Headlamp With a Novel Cooling System”, IEEE Transactions on Device and Materials Reliability, Vol.8, No.3, pp561-564, September 2008
11.Kikuchi, K., Hamashima, Y., and Matsuoka, K., “Fluid and Thermal Analysis for LED Lamp”, Darmstadt University of Technology, ISAL A3.8, pp144-122, 2007
12.Barthel, F., “Developing an Efficient Thermal Management in LED–Headlamps by Virtue Testing and Simulation”, Schefenacker Vision Systems Germany GmbH, P3.5, pp524-531, 2007
13.Lai, Y., and Cordero, N., “Thermal Management of Bright LEDs for Automotive Applications”, Thermal, Mechanical and Multiphysics Simulation and Experiments in Micro-Electronics and Micro-Systems, EuroSime, Vol. 2006, pp.1643953-1643957, 2006
14.Luo, X., Cheng, T., Xiong, W., Gan, Z. and Liu, S., “Thermal analysis of an 80 W light-emitting diode street lamp”, The Institution of Engineering and Technology, Vol.1, No.5, pp191-196, 2007
15.OSRAM Opto Semiconductors Company, Technical Datasheet
16.http://www.shokabo.co.jp/sp_opt/spectrum/color3/color-d.htm
17.Jones, W. P. and Launder, B. E. “The Calculation of Low Reynolds Number Phenomena with Two-equation Model of Turbulence”, Int. J. Heat mass Transfer, Vol.16, pp.1119-1130, 1973
18.Launder, B. E., and Spalding, D. B., 1974, “The numerical computation of turbulent flow”, Comp. Meth. In Appl. Mech. and Eng., Vol. 3, pp. 269-289.
19.Siegel, R., and Howell, J. R., "Thermal Radiation Heat Transfer," Third Ed., Hemisphere Publishing Corp., Washington, DC., 1992.
20.Fiveland, W. A., “Three Dimensional Radiative Heat-Transfer Solutions by the Discrete Ordinates Method”, Journal of Thermophysics and Heat Transfer, 2.4(Oct 1988): 309-316, 1988.
21.CFD-ACE(U),CFD Research Corporation, Alabama, USA, 2003
22.Patankar, S. V., “Numerical Heat Transfer and Fluid Flow”, McGraw-Hill Book Company, New York, 1980
23.CATIA, Dassault Aviation Corporation, France, 1975