簡易檢索 / 詳目顯示

研究生: 黃裕暐
Huang, Yu-Wei
論文名稱: 以長有奈米碳管之三維結構石墨烯為載體之白金觸媒之製備與鑑定及其於直接甲醇燃料電池陽極之應用
Syntheses and Characterizations of Electrocatalyst of Pt Loaded on a Three Dimensional Graphene Grown with Carbon Nanotubes for Anode of DMFCs
指導教授: 郭炳林
Kuo, Ping-Lin
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 100
中文關鍵詞: 氧化石墨烯奈米碳管電極觸媒直接甲醇燃料電池
外文關鍵詞: Graphene Oxide, CNTs, Electrocatalyst, Direct Methanol Fuel Cells
相關次數: 點閱:100下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究內容為合成與鑑定三維結構之石墨烯/奈米碳管複合材,並應用於燃料電池觸媒載體。合成方法為將石墨經氧化開層製備氧化石墨烯,再以含浸法製備鐵觸媒於氧化石墨烯上,經熱處理還原氧化石墨烯及鐵觸媒後,以石墨烯(TRGO)當作基板,藉由化學氣相沉積法並以乙炔當作碳源於石墨烯上直接成長奈米碳管,製備出三維結構石墨烯/奈米碳管之新穎複合碳材(TRGOCNT-X,X表示成長碳管的時間),並控制不同成長碳管之時間,進一步探討與鑑定其特性與效能。
    結果顯示,TRGOCNT-X的導電度達89.2~144.4 S/cm,與未成長碳管之TRGO (9.1 S/cm)相比,上升高達10~16倍,另外以TRGOCNT-X與石墨烯物理混摻(physical blending)奈米碳管(TRGOCNT-phy)相比,導電度均以TRGOCNT-X較高。觸媒方面,Pt/TRGOCNT-20具有最高之電化學活性表面積(77.39 m2/g Pt),為商用品E-TEK(58.06 m2/g Pt)的1.3倍,更為Pt/TRGO的2.8倍,以及Pt/TRGOCNT-phy的2.1倍。在甲醇氧化反應方面,Pt/TRGOCNT-20之質量活性(Mass Activity)為E-TEK的1.2倍,更為Pt/TRGO的2.6倍,以及Pt/TRGOCNT-phy的1.9倍。在直接甲醇燃料電池(Single Cell Test)測試,Pt/TRGOCNT-20之最大功率高出E-TEK 26 %,也比Pt/TRGO與Pt/TRGOCNT-phy分別高出74 %與65 %。

    The purpose of this research was to synthesize and analyze the three dimensional structure of graphene/carbon nanotubes(CNTs) composite, and this material will be used in fuel cell carbon support. Graphene oxide was synthesized by oxidation of graphite. Graphene oxide was then coated with Fe-catalyst with the method of impregnation. The graphene oxide was reduced with thermally, called thermally reduced graphene oxide(TRGO). Using the method of chemical vapor deposition(CVD), CNTs was grew between the layer in TRGO forming Graphene/CNTs composite. By controlling the time of the growth of CNT, different characteristics and performance will be further discussed and analyzed.
    The conductivity of TRGOCNT-X approached to 89.2~144.4 S/cm, which is 10~16 times higher than TRGO, and higher than TRGO physical blending with CNTs (TRGOCNT-phy). We also prepare Pt catalyst by EG reduction method. Pt/TRGOCNT-20 showed the highest electrochemical active surface area (77.39 m2/g Pt), which is 30 % higher than E-TEK (58.06 m2/g Pt), and higher than TRGO (28.05 m2/g Pt) and TRGOCNT-phy (36.81 m2/g Pt). In single cell test, Pt/TRGOCNT-20 had the maximum power density (32.0 mW/cm2), which is 26 % higher than E-TEK (25.4 mW/cm2), and higher than TRGO (18.4 mW/cm2) and TRGOCNT-phy (19.4 mW/cm2). Compared with all electrochemical property, Pt/TRGOCNT-20 showed more potential for application of DMFCs.

    總目錄 中文摘要 I Abstract II 誌謝 III 總目錄 IV 表目錄 VIII 圖目錄 IX 第一章 緒論 1 1.1 燃料電池簡介 1 1.1.1燃料電池發展歷史 1 1.1.2燃料電池概述 3 1.1.2.1 燃料電池發電原理 3 1.1.2.2 燃料電池的特點 4 1.1.3燃料電池種類 5 1.2 研究動機 11 第二章 基本理論 12 2.1直接甲醇燃料電池工作原理與構造 12 2.1.1 觸媒層(Catalytic Layer) 13 2.1.2 質子交換膜(Proton Exchange Membrane) 14 2.2 觸媒材料 15 2.2.1 金屬觸媒簡介及種類 15 2.2.2 陽極觸媒發展方向 16 2.3 碳材料簡介 18 2.3.1 奈米碳管(Carbon Nanotube) 22 2.3.2 單層石墨、石墨烯(Graphene) 23 2.3.2.1 機械剝離法 24 2.3.2.2 熱裂解碳化矽法 25 2.3.2.3 化學氧化還原法 26 2.4 觸媒製備 31 2.4.1 乙二醇還原系統 34 2.5 觸媒及效能分析 37 2.5.1 電化學測試 37 2.5.1.1製備電化學測試工作電極(Working Electrode) 38 2.5.1.2 循環伏安法(Cyclic Voltammetry, CV) 39 2.5.1.3 電化學活性表面積測試 44 2.5.2 膜電極組(Membrane Electrode Assembly, MEA) 47 2.5.2.1製備膜電極組(MEA) 48 第三章 實驗設備與步驟 49 3.1 藥品與材料 49 3.2 樣品製備 50 3.2.1 簡介 50 3.2.2 石墨氧化剝落成氧化石墨烯之製備 50 3.2.3 三維結構奈米複合材料-石墨烯/奈米碳管之製備 51 3.2.4 觸媒層製備 52 3.3 碳載體及觸媒特性分析與儀器 54 3.3.1 X-Ray繞射儀 54 3.3.2 掃描式電子顯微鏡 55 3.3.3 能量散佈光譜儀 55 3.3.4 穿透式電子顯微鏡 56 3.3.5 傅立葉轉換紅外線光譜儀 56 3.3.6 原子力顯微鏡 56 3.3.7 BET比表面積分析 58 3.3.8 四點探針 58 3.3.9 顯微拉曼光譜儀 59 3.3.10 單電池設備 62 第四章 結果與討論 63 4.1 前言 63 4.2 氧化石墨之結構分析 63 4.2.1 傅立葉轉換紅外線光譜(FT-IR)分析 63 4.2.2 X-Ray繞射(XRD)分析 64 4.2.3 原子力顯微鏡(AFM)分析研究 64 4.3 石墨烯/奈米碳管複合材料之物性分析 67 4.3.1石墨烯/奈米碳管複合材料型態分析 67 4.3.2 等溫物理吸脫附、導電度及拉曼光譜分析 73 4.4 觸媒層鑑定與分析 76 4.4.1觸媒型態分析 76 4.4.2觸媒電化學分析 80 4.4.2.1電化學活性表面積(EASA)測試 80 4.4.2.2甲醇氧化反應(MOR)測試 80 4.4.2.3 耐久度(Durability)測試 81 4.5 單電池組效能測試 87 第五章 結論 89 第六章 參考文獻 91 表目錄 表1-1 各式燃料電池差異比較 6 表2-1 氧化石墨方法之比較 28 表2-2 乙二醇之基本物理、化學性質 34 表4-1 不同碳材物理性質數據整理表 74 表4-2 不同電極觸媒電化學活性表面積數據整理表 83 表4-3 不同電極觸媒甲醇氧化反應數據整理表 83 表4-4 不同電極觸媒單電池組測試數據整理表 87 圖目錄 圖1-1 Grove 爵士進行的氣體電池實驗示意圖 2 圖1-2 燃料電池與傳統熱機火力發電過程 4 圖1-3 膜電極組基本結構 10 圖2-1 直接甲醇燃料電池工作原理 12 圖2-2 Nafion®膜之結構式 14 圖2-3 Pt-Ru-WO3/C、E-TEK於95 ℃下進行甲醇進料之單電池極化曲線比較 18 圖2-4 Franklin之碳結構示意圖 20 圖2-5 石墨結構(a)六方晶系層狀圖,(b)六方晶系俯視圖,(c)菱面晶系層狀圖 20 圖2-6 石墨烯為0D巴克球、1D單壁奈米碳管及3D石墨之基本單元結構 21 圖2-7 1,3-Butene之共軛結構 21 圖2-8 (A) Graphene光學照片,(B)(C) GrapheneAFM圖,(D)(E)氧化矽基座示意圖及SEM圖 25 圖2-9 (a)兩種不同晶向的碳化矽,(b)碳化矽成長Graphene示意圖, (c)成長Graphene之AFM及STM圖 26 圖2-10 石墨氧化還原機制 28 圖2-11 天然石墨、GO及還原後GO導電性比較 29 圖2-12 GO, TRGO, CRGO傅立葉轉換紅外線光譜圖 30 圖2-13 聯胺還原環氧基之反應機制 31 圖2-14 聯胺還原羰基之反應機制 31 圖2-15 乙二醇氧化路徑 35 圖2-16 乙醇酸去質子化反應 35 圖2-17 Glycolic Acid(HA)、Glycolate(A-)與pH值關係圖 36 圖2-18 氫氧化鈉濃度對觸媒顆粒大小關係圖 37 圖2-19 玻璃化碳電極 38 圖2-20 三極式電化學測試電池 39 圖2-21 對工作電極施加一三角波之電位-時間曲線 40 圖2-22 循環伏安曲線之三種基本類型 40 圖2-23 純白金觸媒於硫酸電解質溶液之循環伏安圖 45 圖2-24 白金觸媒電極循環伏安圖,顯示氫原子吸脫附峰積分後電荷值 47 圖2-25 膜電極組之構造 47 圖2-26 單電池組構造示意圖 48 圖3-1 複合材料TRGOCNT-X之製備流程圖 52 圖3-2 白金觸媒擔載於碳載體流程圖 52 圖3-3 實驗流程圖 53 圖3-4 AFM構造示意圖 57 圖3-5 四點探針量測薄膜材料電阻示意圖 59 圖3-6 一般石墨材料的拉曼光譜圖 60 圖3-7 G band 與不同石墨層數之關係 61 圖3-8 2D band與不同石墨層數之關係 61 圖3-9 單電池設備系統裝置圖 62 圖4-1 原料石墨與GO之FT-IR圖:(a) 原料石墨;(b)氧化石墨烯(GO) 65 圖4-2 原料石墨與GO之XRD圖:(a) 氧化石墨烯(GO);(b) 原料石墨 65 圖4-3 GO表面之AFM圖 66 圖4-4 Graphite、GO與TRGO以及不同成長碳管時間製備複合碳材SEM圖69 圖4-5 Graphite、GO與TRGO以及不同成長碳管時間製備複合碳材SEM圖70 圖4-6 TRGO以及不同成長碳管時間製備複合碳材料TEM圖 71 圖4-7 TRGO以及不同成長碳管時間製備複合碳材料TEM圖 72 圖4-8 不同成長碳管時間複合碳材料與導電度之關係圖 75 圖4-9 不同成長碳管時間複合碳材料之顯微拉曼光譜儀分析圖譜 75 圖4-10 TRGO以及不同成長碳管時間電極觸媒之TEM圖 77 圖4-11 TRGO以及不同成長碳管時間電極觸媒之TEM圖及白金金屬粒徑分佈圖 78 圖4-12不同成長碳管時間電極觸媒之TEM圖及白金金屬粒徑分佈圖 79 圖4-13 不同成長碳管時間電極觸媒電化學活性表面積測試循環伏安圖 84 圖4-14 不同碳載體電極觸媒電化學活性表面積測試循環伏安圖 84 圖4-15 不同成長碳管時間電極觸媒甲醇氧化反應測試循環伏安圖 85 圖4-16 不同碳載體電極觸媒甲醇氧化反應測試循環伏安圖 85 圖4-17 不同碳載體電極觸媒在不同掃瞄圈數之甲醇氧化反應 86 圖4-18 不同碳載體電極觸媒於甲醇氧化反應之活性減低程度 86 圖4-19 不同碳載體電極觸媒於直接甲醇燃料陽極(MeOH),陰極(O2)觸媒E-TEK(20 wt. % Pt),70 ℃下單電池組效能測試極化曲線 88

    1. W. R. Grove., “On voltaic series and the combination of gases by platinum”, Philos. Mag. Ser., Vol. 3, pp. 127-130 (1839).
    2. 黃鎮江, “燃料電池”, 全華圖書股份有限公司 (2003).
    3. 蔡麗端,林葆喜,燃料電池介紹及產業發展現況,sustainable industrial development bimonthly, pp. 38-47.
    4. J. Giner, C. Hunter, “The mechanism of operation of the teflon-bonded gas diffusion electrode: A mathematical model”, J. Electrochem. Soc., Vol. 116, pp. 1124-1130 (1969).
    5. P. Stonehart, “Development of alloy electrocatalysts for phosphoric acid fuel cells (PAFC)”, J. Appl. Electrochem., Vol. 22, pp. 995-1001 (1992).
    6. 鄭煜騰,萬瑞霙,林修正,“酸性燃料電池的製成研究”,能源季刊,第二十五卷,第四期,161頁 (1995).
    7. E. A. Ticianelli, C. R. Derouin, A. Redondo, S. Srinivasan, “Methods to advance technology of proton exchange membrane fuel cells”, J. Electrochem. Soc., Vol. 135, pp. 2209-2214 (1988).
    8. 張漢宜,曹金萍,林智汶,“PEMFC燃料電池電解質之現況興未來發展方向”,化工第49卷第3期 (2002).
    9. D. H. Jung, C. H. Lee, C. S. Kim, D. R. Shin, “Performance of a direct methanol polymer electrolyte fuel cell”, J. Power Sources, Vol. 71, pp. 169-173 (1998).
    10. M. Rikukawa, K. Sanui, “Proton-conducting polymer electrolyte membranes based on hydrocarbon polymers”, Prog. Polym. Sci., Vol. 25, pp.1463-1502 (2000).
    11. W. Y. Hsu, T. D. Gierke, “Ion transport and clustering in nafion perfluorinatedmembranes”, J. Membr. Sci., Vol. 13, pp. 307-326 (1983).
    12. Z. Zhou, W. Zhou, S. Wang, G. Wang, L. Jiang, H. Li, G. Sun, Q. Xin, “Preparation of highly active 40 wt. % Pt/C cathode electrocatalysts for DMFC via different routes”, Catal. Today, Vol. 93-95, pp. 523-528 (2004).
    13. W. J. Zhou, W. Z. Li, S.Q. Song, Z. H. Zhou, L. H. Jiang, G. Q. Sun, Q. Xin, K. Poulianitis, S. Kontou, “Bi- and tri-metallic Pt-based anode catalysts for direct ethanol fuel cells”, J. Power Sources, Vol. 131, pp. 217-223 (2004).
    14. A. J. Dickinson, L. P. L. Carrette, J. A. Collins, K. A. Friedrich, U. Stimming, “Performance of methanol oxidation catalysts with varying Pt:Ru ratio as a function of temperature”, J. Appl. Electrochemistry, Vol. 34 , pp. 975-980 (2004).
    15. T. Frelink, W. Visscher, J. A. R. van Veen, “On the role of Ru and Sn as promotors of methanol electro-oxidation over Pt”, Sur. Sci., Vol. 335, pp. 353-360 (1995).
    16. J. R. C. Salgado, et al., “Carbon supported Pt70Co30 electrocatalyst prepared by theformic acid method for the oxygen reduction reaction in polymer electrolyte fuel cells”, J. Power Sources, Vol. 141, pp. 13-18 (2005).
    17. P. V. Samant, J. B. Fernandes, “Nickel-modified manganese oxide as an active electrocatalyst for oxidation of methanol in fuel cells”, J. Power Sources, Vol. 79, pp. 114-118 (1999).
    18. J. H. Choi, et al., “A PtAu nanoparticle electrocatalyst for methanol electro-oxidation in direct methanol fuel cells”, J. Electrochem. Soc., Vol. 153, pp. A1812-A1817 (2006).
    19. Y. M. Liang, et al., “Synthesis and structure-activity relationship exploration of carbon-supported PtRuNi nanocomposite as a CO-tolerant electrocatalyst for proton exchange membrane fuel cells”, J. Phys. Chem. B, Vol. 110, pp. 7828-7834 (2006).
    20. Z. B. Wang, et al., “Synthesis and characterization of PtRuMo/C nanoparticle electrocatalyst for direct ethanol fuel cell”, J. Power Sources, Vol. 170, pp. 242-250 (2007).
    21. J. A. Tian, et al., “Highly stable PtRuTiOx/C anode electrocatalyst for direct methanol fuel cells”, Electro. com., Vol. 9, pp. 563-568 (2007).
    22. P. V. Samant, et al, “Carbon supports for methanol oxidation catalyst”, J. Power Sources, Vol. 151, pp. 79-84 (2005).
    23. K. Hirakawa, M. Inoue, T. Abe, “Methanol oxidation on carbon-supported Pt–Ru and TiO2(Pt–Ru/TiO2/C) electrocatalyst prepared using polygonal barrel-sputtering method”, Electrochimica Acta, Vol. 55, pp. 5874-5880 (2010).
    24. Z. Wang, G. Chen, D. Xia, L. Zhang, “Studies on the electrocatalytic properties of PtRu/C-TiO2 toward the oxidation of methanol”, J. Alloys. Comp., Vol. 450, pp. 148-151 (2008).
    25. T. Saida, N. Ogiwara, et al, “Titanium oxide nanosheet modified PtRu/C electrocatalyst for direct methanol fuel cell anodes”, J. Phys. Chem. C, Vol. 114, pp. 13390-13396 (2010).
    26. J. W. Guo, et al., “Development of PtRu-CeO2/C anode electrocatalyst for direct methanol fuel cells”, J. Power Sources, Vol. 156, pp. 345-354 (2006).
    27. T. Frelink, W. Visscher, J.A.R. van Veen, “Particles size effect of carbon-supported platinum catalysts for the electrooxidation of methanol”, J. Electroanal. Chem., Vol. 382, pp. 65-72 (1995)
    28. X. Wang, et al., “Surfactant stabilized Pt and Pt alloy electrocatalyst for polymer electrolyte fuel cells”, Electrochimica Acta, Vol. 47, pp. 2981-2987 (2002)
    29. J. Prabhuram, X. Wang, C. L. Hui, I. M. Hsing, “Synthesis and characterization of surfactant-stabilized Pt/C nanocatalysts for fuel cell applications”, J. Phys. Chem. B., Vol. 107, pp. 11057-11064 (2003)
    30. J. W. Guo, et al., “Preparation and the physical/electrochemical properties of a Pt/C nanocatalyst stabilized by citric acid for polymer electrolyte fuel cells”, Electrochimica Acta, Vol. 50, pp. 1973-1983 (2005)
    31. H. Tang, J. Chen, S. Yao, L. Nie, Y. Kuang, Z. Huang, D. Wang, Z. Ren, “Deposition and electrocatalytic properties of platinum on well-aligned carbon nanotube(CNT) arrays for methanol oxidation”, Mat. Chem. Phys., Vol. 92, pp. 548-553 (2005).
    32. T. Matsumoto, et al, “Efficient usage of highly dispersed Pt on carbon nanotubes for electrode catalysts of polymer electrode fuel cells”, Catal. Today, Vol. 90, pp. 277-281 (2004).
    33. A. K. Geim, K. S. Novoselov, “The rise of graphene”, Nat. Mater., Vol. 6, pp. 183-191 (2007).
    34. M. J. Allen, V. C. Tung, R. B. Kaner, “Honeycomb carbon: a review of graphene”, Chem. Rev., Vol. 110, pp. 132-145 (2010)
    35. Y. W. Zhu, S. Murali, W. W. Cai, et al, “Graphene and Graphene Oxide: Synthesis, Properties, and Applications”, Adv. Mater., Vol. 22, pp. 3906-3924 (2010)
    36. C. Roth, M. Götz, H. Fuess , “Synthesis and characterization of carbon-supported Pt-Ru-WOx catalysts by spectroscopic and diffraction methods”, J. Appl. Electrochem., Vol. 31 , pp. 793-798 (2001).
    37. J. Hayashi, A. Kazehaya, K. Muroyama, A. P. Watkinson,“Preparation of activated carbon from lignin by chemical activation”, Carbon, Vol. 38, pp. 1873-1878 (2000)
    38. D. Lozano-Castelló, M.A. Lillo-Rodenas, D. Cazorla-Amoros, A. Linares-Solano, “Preparation of activated carbons from Spanish anthracite I. Activation by KOH”, Carbon, Vol. 39, pp. 741-749 (2001).
    39. M.A. Lillo-Rodenas, D. Lozano-Castelló, D. Cazorla-Amoros, A. Linares-Solano, “Preparation of activated carbons from Spanish anthracite II. Activation by NaOH”, Carbon, Vol. 39, pp. 751-759 (2001).
    40. Savage. G, “Carbon-carbon composites”, 1st ed., Chapman & Hall:New York, (1993).
    41. K. Tatsumi, N. Iwashita, H. Sakaebe, H. Shioyama, S. Higuchi, “The influence of the graphitic structure on the electrochemical characteristics for the anode of secondary lithium batteries”, J.Electrochem.Soc., Vol. 142, pp. 716-720 (1995)
    42. K. Han, et al., “Preparation and characterization of high metal content Pt-Ru alloy catalysts on various carbon blacks for DMFCs”, Electrochimica Acta, Vol. 52, pp. 1697-1702 (2006).
    43. K. T. Jeng, et al., “Performance of direct methanol fuel cell using carbon nanotube-supported Pt-Ru anode catalyst with controlled composition”, J. Power Sources, Vol. 160, pp. 97-104 (2006).
    44. C. Liu, H. T. Cong, F. Li , “Semi-continuous synthesis of single-walled carbon nanotubes by a hydrogen arc discharge method”, Carbon, Vol. 37, pp. 1865-1868 (1999)
    45. C. Liu, H. M. Cheng, H. T. Cong, F. Li, G. Su, B. L. Zhou, M. S. Dresselhaus, “Synthesis of macroscopically long ropes of well-aligned single-walled carbon nanotubes”, Adv. Mater., Vol. 12, pp. 1190-1192 (2000).
    46. M. Endo, C. Kim, K. Nishimura, T. Fujino, K. Miyashita, ”Recent development of carbon materials for Li ion batteries”, Carbon, Vol. 38, pp. 183-197 (2000)
    47. R. C. Hayward, P. Alberius-Henning, B. F. Chmelka, G. D. Stucky, “The current role of mesostructures in composite materials and device fabrication”, Micropor. Mesopor. Mater., Vol. 44, pp. 619-624 (2001).
    48. K. S. Novoselov, et al, “Electric Field Effect in Atomically Thin Carbon Films”, Science, Vol. 306, pp. 666-669 (2004).
    49. P. Blake, et al, “Making graphene visible”, App. Phys. Lett., Vol. 91, pp. 063124 (2007).
    50. Ed Gerstner, “Nobel Prize 2010: Geim and Novoselov”, Nat. Phys., Vol. 6, pp. 836-836 (2010).
    51. J. H. Chen, et al, “Intrinsic and extrinsic performance limits of graphene devices on SiO2”, Nat. Nanotechnol, Vol. 3, pp. 206-209 (2008).
    52. B. Z. Jang, A. Zhamu, “Processing of nanographene platelets (NGPs) and NGP nanocomposites: a review”, J. Mater. Sci., Vol. 43, pp. 5092-5101 (2008).
    53. J. Hass, W. A. deHeer, E. H. Conrad, “The growth and morphology of epitaxial multilayer graphene”, J. Phys. Condens. Matter., Vol. 20, pp. 323202 (2008).
    54. W. A. deHeer, et al, “Epitaxial graphene”, Nat. Mater., Vol. 7, pp. 406-411 (2008).
    55. C. Berger, et al, “Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics”, J. Phys. Chem. B., Vol. 108, pp. 19912-19916 (2004).
    56. C. Berger, et al, “Electronic confinement and coherence in patterned epitaxial graphene”, Science, Vol. 312, pp. 1191-1196 (2006).
    57. P. G.. Ren, D. X. Yan, et al, “Temperature dependence of grapheme oxide reduced by hydrazine hydrate”, Nanotechnology, Vol. 22, pp. 055705 (2011).
    58. H. Kim, et al, “Graphene/polymer nanocomposites” , Macromolecules, Vol. 43, pp. 6515-6530 (2010).
    59. D. R. Dreyer, et al, “The chemistry of graphene oxide”, Chem. Soc. Rev., Vol. 39, pp. 228-240 (2010).
    60. H. M. Ju, S. H. Huh, et al, “Structures of thermally and chemically reduced graphene”, Mater. Lett., Vol. 64, pp. 357-360 (2010).
    61. B. C. Brodie, “On the atomic weight of graphite”, Philos. Trans. R. Soc. London. Vol. 149, pp. 249-259 (1859).
    62. L. Staudenmaier, “Verfahren zur darstellung der graphitsäure”, Philos. Trans. R. Soc. London., Vol. 31, pp. 1481-1487 (1898).
    63. W. S. Hummers, R. E. Offeman, “Preparation of graphitic oxide”, J. Am. Chem. Soc., Vol. 80, pp. 1339-1339 (1958).
    64. O. C. Compton, S. T. Nguyen, “Graphene oxide, highly reduced graphene oxide, and graphene: versatile building blocks for carbon-based materials”, Small, Vol. 6, pp. 711-723 (2010).
    65. N. I. Kovtyukhova, et al, “Layer-by-layer assembly of ultrathin composite films from micron-sized graphite oxide sheets and polycations”, Chem. Mater., Vol. 11, pp. 771-778 (1999).
    66. M. Hirata, et al, “Thin-film particles of graphite oxide 1: High-yield synthesis and flexibility of the particles”, Carbon, Vol. 42, pp. 2929-2937 (2004).
    67. S. Stankovich, et al, “Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide”, Carbon, Vol. 45, pp. 1558-1565 (2007).
    68. H. C. Schniepp, et al, “Functionalized single graphene sheets derived from splitting graphite oxide”, J. Phys. Chem. B., Vol. 110, pp. 8535-8539 (2006).
    69. M. J. McAllister, et al, “Single sheet functionalized graphene by oxidation and thermal expansion of graphite”, Chem. Mater., Vol. 19, pp. 4396-4404 (2007).
    70. P. Steurer, et al, “Functionalized graphenes and thermoplastic nanocomposites based upon expanded graphite oxide”, Macromol. Rapid Commun., Vol. 30, pp. 316-327 (2009).
    71. H. Kim, J. N. Park, W. H. Lee, “Preparation of platinum-based electrode catalysts for low temperature fuel cell”, Catal. Today, Vol. 87, pp. 237-245 (2003).
    72. M. J. Escudero, E. Hontanon, S. Schwartz, M. Boutonnet, L. Daza, “Development and performance characterization of new electrocatalysts for PEMFC”, J. Power Sources, Vol. 106, pp. 206-214 (2002).
    73. M. Kishida, K. Umakoshi, J. Ishiyama, H. Nagata, K. Wakabayashi, “Hydrogenation of carbon dioxide over metal catalysts prepared using microemulsion”, Catal. Today, Vol. 29, pp. 355-359 (1996).
    74. S. A. Lee, K. W. Park, J. H. Choi, B. K. Kwon, Y. E. Sung, “Nanoparticle synthesis and electrocatalytic activity of Pt alloys for direct methanol fuel cells”, J. Electrochem. Soc., Vol. 149, pp. A1299-A1304 (2002).
    75. M. Götz, H. Wendt, “Binary and ternary anode catalyst formulations including the elements W, Sn and Mo for PEMFCs operated on methanol or reformate gas”, Electrochimica Acta., Vol. 43, pp. 3637-3644 (1998).
    76. C. W. Chen, M. Akashi, “Synthesis ,characterization and catalyst properties of colloidal platinum nanoparticles protected by poly(N-isopropylacrylamide)”, Langumuir, Vol. 13, pp. 6465-6472 (1997).
    77. K. Okitsu, A. Yue, S. Tanabe, H. Matsumoto, “Sonochemical preparation and catalyst behavior of highly dispersed palladium nanoparticles on alumina”, Chem. Mater., Vol. 12, pp. 3006-3011 (2000).
    78. T. Teranishi, M. Hosoe, T. Tanaka, M. Miyake, “Size control of monodispersed Pt nanoparticles and their 2D organization by electrophoretic deposition”, J. Phys. Chem. B., Vol. 103, pp. 3818-3827 (1999).
    79. Z. Liu, J. Y. Lee, M. Han, W. Chen, L. M. Gan, “Synthesis and characterization of PtRu/C catalysts from microemulsions and emulsions”, J. Mater. Chem., Vol. 12, pp. 2453-2458 (2002).
    80. C. Bock, et al., “Size-selected synthesis of PtRu nano-catalysts: Reaction and size control mechanism”, J. Am. Chem. Soc., Vol. 126, pp. 8028-8037 (2004).
    81. W. Chen, J. Zhao, J. Y. Lee, Z. Liu, “Microwave heated polyol synthesis of carbon nanotubes supported Pt nanoparticles for methanol electrooxidation”, Mater. Chem. And Phys., Vol. 91, pp. 124-129 (2005).
    82. S. Yan, et al, “Polyol synthesis of highly active PtRu/C catalyst with high metal loading”, Electrochimica Acta, Vol. 52, pp. 1692-1696 (2006).
    83. H. Y. Du, et al, “Controlled platinum nanoparticles uniformly dispersed on nitrogen-doped carbon nanotubes for methanol oxidation”, Diam. Relat. Mater., Vol. 17, pp. 535-541 (2008).
    84. 胡啟章,電化學原理與方法,五南出版社 (2002).
    85. 吳旻宗,“直接甲醇燃料電池陰極電極觸媒製程之研究”,中國文化大學,材料科學與製造研究所 (2004).
    86. A. Pozio, et al., “Comparison of high surface Pt/C catalysts by cyclic voltammetry”, J. Power Sources, Vol. 105, pp. 13-19 (2002).
    87. W. Vielstich, et al., Handbook of fuel cells: fundamentals technology and applications: John Wiley & Sons Inc., 2003.
    88. D. Kondo, S. Sato, Y. Awano, “Self-organization of novel carbon composite structure: graphene multi-layers combined perpendicularly with aligned carbon nanotubes”, Appl. Phys. Exp., Vol. 1, pp. 094003 (2008).
    89. Q. Su, Y. Liang, X. Feng, K. Mullen, “Towards free-standing graphene/carbon nanotube composite films via acetylene-assisted thermolysis of organocobalt functionalized graphene sheets”, Chem. Comm., Vol. 46, pp. 8279-8281 (2010).
    90. L. L. Zhang, Z. Xiong, X. S. Zhao, “Pillaring chemically exfoliated graphene oxide with carbon nanotubes for photocatalytic degradation of dyes under visible light irradiation”, ACS. Nano, Vol. 4, pp. 7030-7036 (2010).
    91. A. Gupta, et al, “Raman scattering from high-frequency phonons in supported n-graphene layer films”, Nano. Lett., Vol. 6, pp. 2667-2673 (2006).
    92. A. C. Ferrari, et al, “Raman spectrum of graphene and graphene layers”, Phy. Rev. Lett., Vol. 97, pp. 187401 (2006).
    93. M. S. Dresselhaus, et al, “Raman spectroscopy on isolated single wall carbon nanotubes”, Carbon., Vol. 40, pp. 2043-2061 (2002).
    94. T. F. Yeh, et al, “Graphite oxide as a photocatalyst for hydrogen production from water”, Adv. Funct. Mater., Vol. 20, pp. 2255-2262 (2010).
    95. N. V. Medhekar, et al, “Hydrogen bond networks in graphene oxide composite paper: structure and mechanical properties”, ACS. Nano, Vol. 4, pp.2300-2306 (2010).
    96. M.Y. Yen, et al, “Preparation of graphene/multi-walled carbon nanotube hybrid and its use as photoanodes of dye-sensitized solar cells”, Carbon, 10.1016/j.carbon.2011.04.062 (2011)
    97. N. Jha, et al, “Graphene-multi walled carbon nanotube hybrid electrocatalyst support material for direct methanol fuel cell”, Int. J. Hydrogen. Energy., Vol. 36, pp. 7284-7290 (2011).
    98. Z. J. Fan, et al, “Nanographene-constructed carbon nanofibers grown on graphene sheets by chemical vapor deposition: high-performance anode materials for lithium ion batteries”, ACS. Nano, Vol. 5, pp. 2787-2794 (2011).
    99. Y. Shao, et al, “Highly durable graphene nanoplatelets supported Pt nanocatalysts for oxygen reduction”, J. Power Sources, Vol. 195, pp. 4600-4605 (2010).

    下載圖示 校內:2016-08-04公開
    校外:2016-08-04公開
    QR CODE