| 研究生: |
郭盈成 Kuo, Ying-Cheng |
|---|---|
| 論文名稱: |
新式微幫浦與微閥門之設計與製作 Design and Fabrication of Novel Micro-pumps and Micro-valves |
| 指導教授: |
李輝煌
Lee, Huei-Huang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 工程科學系 Department of Engineering Science |
| 論文出版年: | 2003 |
| 畢業學年度: | 91 |
| 語文別: | 中文 |
| 論文頁數: | 89 |
| 中文關鍵詞: | 蠕動式微幫浦 、磁性合金 、微線圈 、微閥門 、微幫浦 |
| 外文關鍵詞: | peristaltic pump, micro-pump, PDMS, permalloy, micro-valve, micro-coil |
| 相關次數: | 點閱:171 下載:5 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究目的為設計與製作可整合於生醫檢測晶片之微流體輸送系統,包括微幫浦與微閥門。在設計過程中,為了使晶片材料具生物相容性,一種彈性聚合物材料—PDMS(Polydimethylsiloxane)被選擇作為微管道之結構,並利用其軟韌之特性來作為管道中之致動薄膜。此外,為了整合多數生物晶片2-D平面流體控制並發展多方向之流體驅動,本研究採用「蠕動式」作為微幫浦之驅動原理,使得藉由三組以上微閥門循序控制,來擠壓微管道中流體往特定方向流動。
在晶片製作部分,本研究採用PDMS之特殊製程,可節省晶片製作之成本與時間。本研究並結合磁性合金與氣動空腔的製作,完成電磁式微幫浦與氣動式微幫浦兩種不同驅動方式之晶片。實驗結果顯示,本研究之晶片確實具有驅動流體之功能,且氣動式微幫浦並測得38.9 之幫浦流率。最後,綜合電磁式微幫浦與氣動式微幫浦之實作經驗,本研究並提出整合電磁式與氣動式之微幫浦晶片設計概念,作為未來單一微幫浦可粗調與微調之創見,故本研究可提供後續研究者一可行之方向。
In this article, we design and fabricate a chip including micro-pumps and micro-valves for fluidic transport on biochips. In order to make the chip more biocompatible, a kind of polymer — PDMS (polydimethylsiloxane) is chosen, and its flexible material property is also excellent to form the movable membrane of micro-pumps and micro-valves. Besides, “peristaltic” pumping principle is used to simplify the design of pumps and improve the integration with biochips later on. In this research, we demonstrate two ways to actuation the membrane — one is magnetic force and the other is pneumatic force. And the pumping rate of pneumatic one is measured as 38.9 .
[1].M. Madou, Fundamentals of Microfabrication, CRC Press, New York (1997).
[2].Kovacs, Micromachined Transducers Sourcebook, McGraw-Hill, Taiwan (2000).
[3].C. G. Keller and R. T. Howe, “Hexsil Tweezers for Teleoperated Micro-Assembly,” IEEE Micro Electro Mechanical Systems, pp. 72-77, 1997.
[4].P. Bley, “The LIGA Process for Fabrication of Three-dimensional Microscale Structures,” Interdisciplinary Science Reviews, Vol. 18, No. 3, pp. 267-272, 1993.
[5].K. C. Young, H. M. Lien, C. C. Lin, T. T. Chang, G. B. Lee and S. H. Chen, “Microchip and Capillary Electrophoresis for Quantitative Analysis of Hepatitis C Virus based on RT- competitive PCR,” Special issue on miniaturization, Talanta, 2001.
[6].T. R. Hsu, MEMS & Microsystems Design and Manufacture, McGraw-Hill, Boston (2002).
[7].J. Evans, D. Liepmann and A. P. Pisano, “Planar Laminar Mixer,” IEEE Micro Electro Mechanical Systems, pp. 96-101, 1997.
[8].R. Rapp, W. K. Schomburg, D. Maas, J. Schulz and W. Stark, “LIGA Micropump for Gases and Liquids,” Sensors and Actuators A, Vol. 40, pp. 57-61, 1994.
[9].J. Lopez, M. Puig-Vidal, M. Carmona, C. Stamopoulos, T. Laopoulos and S. Siskos, “Temperature Control Configurations for A Thermo-Pneumatic Micropump,” Proceedings of International Conference on Evolutionary Computation, Vol. 2, pp. 827-830, 1999.
[10].A. Olsson, P. Enoksson, G. Stemme and E. Stemme, “A Valveless Planar Pump Isotropically Etched in Silicon,” Proceedings Micromechanics Europe, pp. 120-123, 1995.
[11].T. Gerlach and H. Wurmus, “Working Principle and Performance of the Dynamic Micropump,” Sensors and Actuators A, Vol. 50, pp. 135-140, 1995.
[12].R. Linnemann, P. Woias, C. D. Senfft and J. A. Ditterich, “A Self-priming and Bubble-tolerant Piezoelectric Silicon Micropump for Liquids and Gases,” IEEE Micro Electro Mechanical Systems, pp. 532-537, 1998.
[13].R. Zengerle, J. Ulrich, S. Kluge, M. Richter and A. Richter, “A Bidirectional Silicon Micropump,” Sensors and Actuators A, Vol. 50, pp. 81-86, 1995.
[14].E. Stemme and G. Stemme, “Valveless Diffuser/Nozzle Based Fluid Pump,” Sensors and Actuators A, Vol. 39, No. 2, pp. 159-167, 1993.
[15].W. L. Benard, H. Kahn, A. H. Heuer and M. A. Huff, “A Titanium-Nickel Shape Memory Alloy Actuated Micropump,” Solid-State Sensors and Actuators, pp. 361-364, 1997.
[16].W. Zhang and C. H. Ahn, “A Bi-directional Magnetic Micropump on A Silicon Wafer,” Solid-State Sensor and Actuators, pp. 94-97, 1996.
[17].M. Khoo and C. Liu, “A Novel Micromachined Magnetic Membrane Microfluid Pump,” Proceedings of the 22nd Annual International Conference of the IEEE, Vol. 3, pp. 2394-2397, 2000.
[18].Y. Yang, Z. Zhou, X. Ye and X. Jiang, "A Bimetallic Thermally Actuated Micropump," ASME MEMS, Vol. DSC-59, pp. 351-354, 1996.
[19].H. A. Chong and G. S. Mark, “Fluid Micropumps Based on Rotary Magnetic Actuators,” IEEE Micro Electro Mechanical Systems, pp. 408-411, 1995.
[20].A. S. Dewa, K. Deng, D. C. Ritter, C. Bonham, H. Guckel and S. Massood-Ansari, “Development of LIGA-Fabricated, Self-Priming, In-Line Gear Pumps,” Solid State Sensors and Actuators, Vol. 2, pp. 757-760, 1997.
[21].A. Richter, A. Plettner, K. A. Hofmann and H. Sandmaier, “A Micromachined Electrohydrodynamic Pump,” Sensors and Actuators A, Vol. 29, pp. 159-168, 1991.
[22].L. Smith and B. Hok, “A Silicon Self-Aligned Non-Reverse Valve,” Solid-State Sensors and Actuators, pp. 1049-1051, 1991.
[23].C. Vieider, O. Ohman and Elderstig, “A Pneumatically Actuated Micro Valve with a Silicone Rubber Membrane for Integration with Fluid-Handling Systems,” Solid-State Sensors and Actuators, Vol. 2, pp. 284-286, 1995.
[24].X. Yang, C. Grosjean, Y. C. Tai and C. M. Ho, “A MEMS Thermopneumatic Silicone Membrane Valve,” IEEE Micro Electro Mechanical Systems, pp. 114-118, 1997.
[25].H. Jerman, “Electrically-Activated ,Normally-Closed Diaphragm Valve,” Solid-State Sensors and Actuators, pp. 1045-1048, 1991.
[26].S. Shoji, van der Schoot, B de Rooij N and Esashi M, “Smallest Dead Volume Microvalves for Integrated Chemical Analyzing Systems,” Solid-State Sensors and Actuators, pp. 1052-1055, 1991.
[27].M. A. Huff, J. Gilbert and M. A. Schmidt, “Flow Characteristics of a Pressure-Balanced Microvalve,” Solid-State Sensors and Actuators, pp. 98-101, 1993.
[28].K. Yanagisawa, H. Kuwano and A. Tago, “An Electromagnetically Driven Microvalve,” Solid-State Sensors and Actuators, pp. 102-105, 1993.
[29].D. Armani, C. Liu and N. Aluru, “Re-Configurable Fluid Circuits by PDMS Elastomer Micromachining,” IEEE Micro Electro Mechanical Systems, pp. 222-227, 1999.
[30].Y. Xia and G. M. Whitesides, “Soft Lithography,” Angew. Chem. Int. Ed., pp. 550-575, 1998.
[31].J. G. Spencer, “Piezoelectric Micropump with Three Valves Working Peristaltically,” Sensor and Actuators A, Vol. 21-23, pp. 203-206, 1990.
[32].C. Grosjean and Y. C. Tai, “A Thermopneumatic Peristaltic Micropump,” Solid-State Sensors and Actuators, pp. 1776-1779, 1999.
[33].M. A. Unger, H. P. Chou, T. Thorsen, A. Scherer and S. R. Quake, “Monolithic Microfabricated Valves and Pumps by Multilayer Soft Lithography,” Science, Vol. 288, pp. 113-116, 2000.
[34].B. Lochel, A. Maciossek, M. Rothe and W. Windbracke, “Microcoils Fabricated by UV Depth Lithography and Galvanoplating,” Sensors and Actuators A, Vol. 54, pp. 663-668, 1996.
[35].張瑞斌,“微電鍍技術及其在生物晶片之應用,” 國立成功大學工程科學研究所碩士論文(2002).
[36].http://mirine.kaist.ac.kr/research/bio.html
[37].回寶珩, 林展生, 李國賓, “PDMS表面處理技術及其在新式微閥之應用,” The 6th Nano Engineering and Micro System Technology Workshop, 2002.
[38].W. J. Spencer, W. T. Corbett, L. R. Dominguez and B. D. Shafer, “An Electronically Controlled Piezoelectric Insulin Pump and Valves,” IEEE Trans. Sonics Ultrason, Vol. 25, pp. 153-167, 1978.
[39].F. C. M. van de Pol, H. T. G. van Lintel, M. Elwenspoek and J. H. J. Fluitman, “Thermopneumatic Micropump Based on Micro-engineering Techniques,” Sensors and Actuators A, Vol. 21, No. 1-3, pp. 198-202, 1990.
[40].李國賓, “下一波之生物晶片-微流體生醫晶片之應用及研發”, 《科學發展》月刊, 2003. (In press)