研究生: |
王滋農 Wang, Tzu-Nung |
---|---|
論文名稱: |
應用於身體感應網路中有效節能的動作偵測 Energy-efficient Motion Detection for Body Sensor Network |
指導教授: |
藍崑展
Lan, Kun-Chan |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 醫學資訊研究所 Institute of Medical Informatics |
論文出版年: | 2010 |
畢業學年度: | 99 |
語文別: | 英文 |
論文頁數: | 40 |
中文關鍵詞: | 身體感應網路 、動作偵測 、節能 、k個鄰近節點演算法 、馬可夫鏈 、分時多工存取 |
外文關鍵詞: | body sensor network, motion detection, energy conservation, k-nearest neighbors algorithm, Markov chain, TDMA |
相關次數: | 點閱:136 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著老年人口的增加,無線身體感應器(wireless body sensor)被廣泛地應用在老人健康照護,也因為感應器體積小、重量輕,所以適合應用在監控人類行為的動作偵測,在身體感應網路(BSN)中,由於能量有限,使得關鍵的挑戰是如何去延長所有感應器的存活時間。在先前以叢集為基礎(cluster-based)的文獻中,叢集頭(cluster head)是由機率或剩餘能量來決定,但這些方法無法同時達到叢集內溝通能量的最小化和能量負載的分配,因此這篇論文的目的是同時滿足這二項備受關注的議題,以求最大化整個網路的存活時間。我們利用馬可夫鏈(Markov chain)作為我們的預測器來估計下一個姿勢,並且觀察每個姿勢的特性,找出一個能最小化叢集內溝通能量消耗的叢集頭,我們同時平衡叢集頭跟叢集節點的執行次數來考慮能量負載分配,再納入叢集頭選擇和能量負載分配方法,提出一個基於高準確率動作偵測加上預測的有效節能傳輸方式,最後藉由包含二種分類以上的k個鄰近節點演算法(k-nearest neighbors algorithm),我們在身體感應網路中使用加速度感測器結合有效節能的傳輸,實作一個偵測動作的想法,此外,同時也考慮完整資料傳輸和部份資料傳輸。實驗結果顯示這二種情況在動作偵測中,皆能獲得高的準確率(超過百分之九十)。
With the increase in the population of elderly people, wireless body sensors are broadly applied in healthcare applications for elders while they are also suitable for motion detection to monitor human behaviors because of its small size and light weight. A critical challenge for BSNs is how to prolong all sensor nodes’ lifetime due to the energy restriction. In previous cluster-based papers, the cluster heads (CHs) are selected by probability or residual energy. However, these approaches can’t achieve both the minimization of intra-cluster communication energy and energy load distribution. Thus, the aim of our paper is to meet both of two concerned issues to maximize the lifetime of the entire network. In our work, we exploit Markov chain as our predictor for estimating the next posture as well as observe the character of each posture to find a CH minimizing the intra-cluster communication energy. Simultaneously we also take energy load distribution into account balancing the numbers of times of being CHs and cluster nodes. We incorporate the methods of CH selection and energy load distribution to present the process of the energy-efficient transmission with prediction based on the high-accuracy motion detection. Finally, we combine the energy-efficient transmission to implement an idea of detecting motions using accelerometer sensors in body sensor networks by k-nearest neighbors algorithm (KNN) including more than two categories. Moreover, full-transmission (FT) and partial-transmission (PT) are considered and the experiment result shows both two cases have high accuracy (above 90%) for motion detection.
[1]Feng Xia, Zhenzhen Xu, Lin Yao, Weifeng Sun, Mingchu Li. Prediction-based Data Transmission for Energy Conservation in Wireless Body Sensors. Wireless Internet Conference (WICON), 2010 The 5th Annual ICST.
[2]S. Xiao, A.Dhamdhere, V. Sivaraman, and A.Burdett, “Transmission Power Control in Body Area Sensor Networks for Healthcare Monitoring.” IEEE Journal on Selected Areas in Communications, vol. 27, no. 1, pp. 37–48, Jan 2009.
[3]Park, S., Jayaraman, S.: On Innovation, Quality of Life and Technology of BodyNets. In: Proceedings of the ICST 3rd International Conference on Body Area Networks, ICST, Tempe, Arizona (2008)
[4]B. Otal, L. Alonso and C. Verikoukis. Novel QoS Scheduling and Energy-saving MAC Protocol for Body Sensor Networks Optimization. Proceedings of the International Conference on Body Area Networks, 2008.
[5]Lorincz, K., Chen, B.-R., Werner Challen, G., Roy Chowdhury, A., Patel, S., Bonato, P., Welsh, M.: Mercury: A Wearable Sensor Network Platform for High-fidelity Motion Analysis. In: Proc. of the Int. Conf. on Embedded Networked Sensor Systems, SenSys (2009)
[6]S. Biswas and M. Quwaider. Body Posture Identification Using Hidden Markov Model with Wearable Sensor Networks. In BodyNets Workshop, Tempe, AZ, USA, March 2008.
[7]Ghasemzadeh, H. and Jafari, R., “Sport Training Using Body Sensor Networks: A Statistical Approach to Measure Wrist Rotation for Golf Swing,” The Fourth International Conference on Body Area Networks (BodyNets 09), Los Angeles, CA, April 1-3 2009.
[8]KWON D. Y., GROSS M.: Combining Body Sensors and Visual Sensors for Motion Training. In ACM SIGCHI International Conference on Advances in computer Entertainment Technology (2005), pp. 94–101.
[9]D. Vlasic, R. Adelsberger, G. Vannucci, J. Barnwell, M. Gross, W. Matusik, and J. Popovic´, “Practical Motion Capture in Everyday Surroundings,” in Proc. SIGGRAPH 2007, ACM, San Diego, CA, 2007.
[10]I. E. Lamprinos, A. Prentza, E. Sakka, and D. Koutsouris, “Energy-efficient MAC Protocol for Patient Personal Area Networks,” IEEE Eng. Med. Biology Soc., vol. 2005, no. 2005, pp. 3799–3802, 2005.
[11]O. C. Omeni, O. Eljamaly, and A. J. Burdett, “Energy Efficient Medium Access Protocol for Wireless Medical Body Area Sensor Networks,” in Proc. 4th IEEE-EMBS Int. Summer School & Symp. Medical Devices and Biosensors, Aug. 2007, pp. 29–32.
[12]A.A. Abbasi, M. Younis, A Survey on Clustering Algorithms for Wireless Sensor Networks, Elsevier Computer Communications 30 (14-15) (2007) 2826–2841.
[13]W.R. Heinzelman, A. Chandrakasan, H. Balakrishnan, Energy-efficient Communication Protocol for Wireless Microsensor Networks, IEEE Proceedings of the Hawaii International Conference on System Sciences, January 2000, pp. 1–10.
[14]Song Ci , Mohsen Guizani , Hamid Sharif, Adaptive Clustering in Wireless Sensor Networks by Mining Sensor Energy Data, Computer Communications, v.30 n.14-15, p.2968-2975, October, 2007
[15]L. Yan, L. Zhong, and N. Jha, “Energy Comparison and Optimization of Wireless Body-area Network Technologies,” presented at the Int.Conf.Body Area Netw., BodyNets, Florence, Italy, Jun. 2007.
[16]E. Foxlin, M. Harrington, and G. Pfeifer, “Constellation: A Wide-Range Wireless Motion-Tracking System for Augmented Reality and Virtual Set Applications,” Proc. Siggraph 98, ACM Press, New York, 1998, pp. 371-378
[17]E. Foxlin and M. Harrington, “WearTrack: A Self-referenced Head and Hand Tracker for Wearable Computers and Portable VR,” presented at the 4th Int. Symp. Wearable Computers 2000.
[18]Smith, A., Balakrishnan, H., Goraczko, M., and Priyantha, N. Tracking Moving Devices With The Cricket Location System. In Proc. 2nd ACM MobiSys (Boston, MA, June 2004), pp. 190–202.
[19]Bussman J, Martens W, Tulen J, Schasfoort F, Van Den Berg-Emons H, Stam H (2001). Measuring Daily Behavior Using Ambulatory Accelerometry: The Activity Monitor. Behavior Research Methods, Instruments & Computers 33(3):349-356.
[20]Mayagoitia R, Nene A, Veltink P (2002). Accelerometer and Rate Gyroscope Measurement of Kinematics: An Inexpensive Alternative to Optical Motion Analysis Systems. Journal of Biomechanics 35:537-542.
[21]T. Sakaguchi, K. Tsutomu, H. Katayose, K. Sato, and S. Inokuchi,“Human Motion Capture by Integrating Gyroscopes and Accelerometers,” in Proc. 1996 IEEE/SICE/RSJ Int. Conf. Multisensor Fusion Integration Intelligent Systems, 1996, pp. 470–475.
[22]KIRK, A. G., OBRIEN, J. F., AND FORSYTH, D. A. 2005. Skeletal Parameter Estimation from Optical Motion Capture Data. In Conference on Computer Vision and Pattern Recognition, 782–788.
[23]Kazutaka Kurihara, Shin'ichiro Hoshino, Katsu Yamane, and Yoshihiko Nakamura. Optical Motion Capture System with Pan-tilt Camera Tracking and Tealtime Data Processing. In Proc. of IEEE International Conference on Robotics and Automation (ICRA2002), volume 2, pages 12411248, May 2002.
[24]Klaus Dorfm¨uller-Ulhaas. Robust Optical User Motion Tracking Using a Kalman Filter. In 10th ACM Symposium on Virtual Reality Software and Technology, 2003.
[25]CHEN, Y., LEE, J., PARENT, R., AND MACHIRAJU, R. 2005. Markerless Monocular Motion Capture Using Image Features and Physical Constraints. In Computer Graphics International, 36–43.
[26]Hedvig Sidenbladh, Michael J. Black, and David J. Fleet. Stochastic Tracking of 3D Human Figures Using 2D Image Motion. in Proc. European Conf. Computer Vision, Dublin, Ireland, 2000, pp. 702–718
[27]Masashi Uchinoumi, Joo Kooi Tan, Seiji Ishikawa. A Simple-Structured Real-Time Motion Capture System Employing Silhouette Images. 2004 IEEE international conference on systems, man & cybernetics : ( The Hague, Netherlands, 10-13 october 2004 )
[28]O’BRIEN, J., BODENHEIMER, R., BROSTOW, G., AND HODGINS, J. 2000. Automatic Joint Parameter Estimation from Magnetic Motion Capture Data. In Graphics Interface, 53–60.
[29]Su, Yu., C. R. Allen, D. Geng, D. Burn, U. Brechany, G. D. Bell and R. Rowland (2003). 3-d Motion System (Data-Gloves): Application for Parkinson’s Disease. IEEE Transactions on Instrumentation and Measurement 52, 662–674.
[30]Kiyoshi Hoshino: CGA Synthesizer Interpolating and Extrapolating Motion Data. IWEC 2002: 339-346
[31]D. Roetenberg, H.J. Luinge, and P.H. Veltink. Inertial and Magnetic Sensing of Human Movement Near Ferromagnetic Materials. In IEEE/ACM International Symposium on Mixed and Augmented Reality (ISMAR), pages 268–269, Tokyo, Japan, 2003.
[32]Kim Doang Nguyen, I-Ming Chen, Song Huat Yeo, Been-Lirn Duh. Motion Control of a Robotic Puppet through a Hybrid Motion Capture Device. Proceedings of the 3rd Annual IEEE Conference on Automation Science and Engineering Scottsdale, AZ, USA, Sept 22-25, 2007
[33]G. Klein and T. Drummond. Tightly Integrated Sensor Fusion for Robust Visual Tracking. Image and Vision Computing, 22(10):769–776, Sept. 2004.
[34]V. Kawadia and P.R. Kumar, “Power Control and Clustering in Ad Hoc Networks,” Proc. IEEE INFOCOM, Apr. 2003.
[35]S. Narayanaswamy, V. Kawadia, R.S. Sreenivas, and P.R. Kumar, “Power Control in Ad-Hoc Networks: Theory, Architecture, Algorithm and Implementation of the COMPOW protocol,” Proc. European Wireless 2002. Next Generation Wireless Networks: Technologies, Protocols, Services and Applications, pp. 156-162, Feb. 2002.
[36]S. Singh and C. Raghavendra, “PAMAS: Power Aware Multi-Access protocol with Signalling for Ad Hoc Networks,” ACM Computer Communication Review, vol. 28, no. 3, pp. 5–26, July 1998.
[37]K. Sohrabi, J. Gao, V. Ailawadhi, and G. J. Pottie, “Protocols for Self-Organization of a Wireless Sensor Network,” IEEE Personal Comm. Mag., vol. 7, no. 5, Oct. 2000.
[38]Z. Haas and S. Tabrizi, “On Some Challenges and Design Choices in Ad-Hoc Communications,” in IEEE MILCOM’98, October 1998.
[39]W. Ye, J. Heidenmann, and D. Estrin, “An Energy-Efficient MAC Protocol for Wireless Sensor Networks,” in Proceedings of IEEE INFOCOM, New York, NY, June 2002.
[40]S. Lindsey and C. S. Raghavendra, "PEGASIS: Power Efficient GAthering in Sensor Information Systems," in the Proceedings of the IEEE Aerospace Conference, Big Sky, Montana, March 2002.
[41]S. Lindsey, C. S. Raghavendra and K. Sivalingam, "Data Gathering in Sensor Networks using the Energy*Delay Metric", in the Proceedings of the IPDPS Workshop on Issues in Wireless Networks and Mobile Computing, San Francisco, CA, April 2001.
[42]S. Bandyopadhyay and E. Coyle, “An Energy-Efficient Hierarchical Clustering Algorithm for Wireless Sensor Networks,” Proc. IEEE INFOCOM, Apr. 2003.
[43]O. Younis, S. Fahmy, HEED: A Hybrid, Energy-Efficient, Distributed Clustering Approach for Ad Hoc Sensor Networks, IEEE Transactions on Mobile Computing 3 (4) (2004).
[44]S. Arulampalam, S. Maskell, N. Gordon and T. Clapp, “A Tutorial on Particle Filters for On-Line Non-Linear/Non-Gaussian Bayesian Tracking,” IEEE Trans. Signal Processing, vol. 50, no. 2, pp. 174-189, 2002.
[45]http://en.wikipedia.org/wiki/Hidden_Markov_model
[46]http://en.wikipedia.org/wiki/Neural_network
[47]http://en.wikipedia.org/wiki/K-nearest_neighbor_algorithm
[48]J. J. Liang, and Y. C. Feng, “Indexing the Bit-code and Distance for Fast KNN Search In High-dimensional Spaces,” Zhejiang University: Science A, 2007, vol. 8, pp. 857–863.
[49]Guha, S., Rastogi, R., Shim, K., 1998. Cure: An Efficient Clustering Algorithm for Large Databases. Proc. ACM SIGMOD Int. Conf. on Management of Data, p.73-84.
[50]L. Song, D. Kotz, R. Jain, X. He, Evaluating Next Cell Predictors With Extensive Wi-Fi Mobility Data, IEEE Transactions on Mobile Computing 5 (12) (2006) 1633–1649. December.
[51]“Taekwondo “, ISBN:978-962-14-3583-5, Hong Kong, 2007
[52]http://focus.ti.com/docs/prod/folders/print/cc2420.html
[53]http://www.willow.co.uk/html/telosb_mote_platform.html
[54]http://focus.ti.com/mcu/docs/mcuhome.tsp?sectionId=101
[55]http://www.ieee802.org/15/pub/TG4.html
[56]http://www.tinyos.net/