簡易檢索 / 詳目顯示

研究生: 洪塗城
Hong, Tu-Cheng
論文名稱: 泡沫無機聚合物製程及性能之研究
Study on Manufacturing Process and Performance of Foamed Inorganic Polymers
指導教授: 黃忠信
Huang, Jong-Shin
學位類別: 博士
Doctor
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 英文
論文頁數: 129
中文關鍵詞: 無機聚合物偏高嶺土泡沫吸水率吸音率聲音穿透損失泡沫無機聚合物
外文關鍵詞: Inorganic polymer, Metakaolin, Foam, Water absorption, Sound absorption coefficient, Sound transmission loss, Inorganic polymeric foam
相關次數: 點閱:184下載:13
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 以70%偏高嶺土和30%高爐爐石粉混合作為原料,並以機械發泡的方式製作發泡無機聚合物(簡稱FIP),其中,包含有0.4~1.0 g⁄cm^3 等多種不同密度和6、10及14等三種不同厚度之FIP試體。採用X射線衍射(XRD),紅外線光譜(FTIR)和數位影像分析偏高嶺土、爐石粉、無機聚合物膠結材和FIP試體的微結構特點。也評估攪拌時間、水/固比和發泡劑對無機聚合物膠結材的屬性之影響。此外,通過進行一系列的測量,獲得FIP試體的孔徑分佈、吸水率、熱傳導係數、機械性質、吸音率和聲音穿透損失,並進行相互比較。由實驗結果可發現FIP試體孔徑大小、細胞壁厚,以及抗壓強度、抗彎強度和熱傳導係數是顯著受密度的影響。實驗結果也可發現,吸水率相對於密度的變化類似降噪係數。此外,進行測量有不同厚度和不同密度的FIP芯材之三明治層板的聲音穿透損失,以確定FIP芯材兩面貼上矽酸鈣板後,對能否增強降低噪音的影響。由實驗結果,泡沫無機聚合物(FIP)作為吸音和隔音材料的可行性可被評估。

    A mixture of 70% metakaolin and 30% blast furnace slag powders is used as the raw material in the manufacture of foamed inorganic polymers (FIP), with various densities ranging from 0.4 to 1.0 g⁄cm^3 and different thicknesses of 6, 10 and 14 cm, using a mechanical foaming method. The microstructures of the metakaolin and slag powders, inorganic binder and FIP specimens are characterized by using XRD, FTIR and image analyses. The effects of stirring time, water/solid ratio and foaming agent on the properties of the inorganic binders are also evaluated. Moreover, the pore size distributions, water absorption, thermal properties, mechanical properties, sound absorption coefficients and sound transmission losses of the FIP specimens are obtained by conducting a series of measurements, and then compared with each other. Based on the experimental results, it is found that the measured cell length, cell wall thickness, compressive strength, flexural strength and coefficient of thermal conductivity of the FIP specimens are significantly affected by their density. The variation in water absorption with respect to density is similar to that of the noise reduction coefficient. In addition, the sound transmission losses of sandwich panels with different-thickness and various-density FIP cores were measured to determine if two faces of calcium silicate boards can enhance their noise reducing effects. As a result, the feasibility of using inorganic polymeric foam as a sound absorption and insulation material can be evaluated.

    Abstract I 摘要 II 致謝 III Table of Contents IV List of Tables VII List of Figures IX List of Abbreviations and Symbols XII Chapter 1 Introduction 1 1.1 Research purposes 1 1.2 Scope of this thesis 3 Chapter 2 Literature Review 4 2.1 Cement foams 4 2.1.1 Production of cement foams 4 2.1.2 Defects of cement foams 5 2.2 Inorganic polymers 6 2.3 Thermology 8 2.4  Acoustics 10 2.4.1 Noise 10 2.4.2 Sound wave equation 12 2.4.3 Transmission loss of a single-layer board 14 2.4.4 Sound absorption 20 Chapter 3 Materials and physical properties 28 3.1 Experimental methods 29 3.1.1 Materials 29 3.1.2 Alkaline activating solution 30 3.1.3 Inorganic binder 30 3.1.4 Manufacturing process of FIP specimens 31 3.1.5 FIP specimens 32 3.2 Results and discussion 34 3.2.1 Characterization of metakaolin and slag powders 34 3.2.2 Effects of W/S on viscosity 35 3.2.3 Effects of stirring time 36 3.2.4 Effect of foaming agent 37 3.2.5 Pore size distribution 37 3.2.6 Water absorption 39 3.2.7 Actual density 40 Chapter 4 Mechanical Properties 51 4.1 The optimum design methods of structural sandwich panels 51 4.1.1 Analysis of sandwich beam 54 4.1.2 Minimum weight design for stiffness in sandwich beams 55 4.1.3 Minimum weight design for strength in sandwich beams 57 4.1.4 Minimum weight design for both stiffness and strength 65 4.2 Experimental methods 70 4.3 Results and discussion 70 Chapter 5 Thermal Properties 80 5.1 Thermal conductivity of sandwich structures 80 5.2 Experimental methods 83 5.3 Experimental results 84 5.4 Numerical simulation of thermal conductivity 85 5.5 Discussion 88 Chapter 6 Acoustic properties 101 6.1 Experimental methods 101 6.2 Results and discussion 103 6.2.1 Sound absorption 103 6.2.2 Effects of density on sound transmission loss 104 6.2.3 Effect of thickness on sound transmission loss 106 6.2.4 Sound transmission losses of sandwich panels 107 Chapter 7 Conclusion and Suggestions 122 7.1 Conclusion 122 7.2 Suggestions 124 References 125 Curriculum Vitae 128

    Arellano Aguilar, R., Burciaga Díaz, O., & Escalante García, J. I. (2010). Lightweight concretes of activated metakaolin-fly ash binders, with blast furnace slag aggregates. Construction and Building Materials, 24(7), 1166-1175.
    Bai, M. S. (2012). Engineering acoustics: Chuan Hwa Book.
    Bakharev, T. (2005). Resistance of geopolymer materials to acid attack. Cement and Concrete Research, 35(4), 658-670.
    Barbosa, V. F. F., MacKenzie, K. J. D., & Thaumaturgo, C. (2000). Synthesis and characterisation of materials based on inorganic polymers of alumina and silica: sodium polysialate polymers. International Journal of Inorganic Materials, 2(4), 309-317.
    Chevillotte, F., & Panneton, R. (2007). Elastic characterization of closed cell foams from impedance tube absorption tests. J Acoust Soc Am, 122(5), 2653-2660.
    Christensen, R. M. (2012). Mechanics of composite materials: DoverPublications. com.
    Collishaw, P. G., & Evans, J. R. G. (1994). An assessment of expressions for the apparent thermal conductivity of cellular materials. Journal of Materials Science, 29(9), 2261-2273.
    Davidovits, J. (1985). Eearly high-strength mineral polymer, 4509985. U. S. Patent.
    Davidovits, J. (1989). Geopolymers and geopolymeric materials. Journal of Thermal Analysis and Calorimetry, 35(2), 429-441.
    Davidovits, J. (1991). Geopolymers : inorganic polymeric new materials. Journal of thermal analysis, 37(8), 1633-1656.
    Davidovits, J. (1993). Geopolymer cements to minimize carbon-dioxide greenhouse-warming. Ceramics Transaction, 37, 165-182.
    Davidovits, J. (1994a). Geopolymers: man-made rock geosynthesis and the resulting development of very early high strength cement. J. Materials Education, 16(2&3), 91-139.
    Davidovits, J. (1994b). Method for obtaining a geopolymeric binder allowing to stabilize, solidify and consolidate toxic or waste materials, 5349118. U. S. Patent.
    Davidovits, J., Davidovits, R., & James, C. (1999). Chemistry of geopolymeric systems terminology. Paper presented at the Proceeding of Geopolymer 99 Second International Conference
    Deng, Y., Fedler, C. B., & Gregory, J. M. (1992). Predictions of Thermal Characteristics for Mixed Porous Media. Journal of Materials in Civil Engineering, 4(2), 185-195.
    Esmaily, H., & Nuranian, H. (2012). Non-autoclaved high strength cellular concrete from alkali activated slag. Construction and Building Materials, 26(1), 200-206.
    Fahy, F., & Fahy, F. J. (1987). Sound and structural vibration: radiation, transmission and response: Academic Pr.
    Gibson, L. J., & Ashby, M. F. (1999). Cellular solids: structure and properties: Cambridge university press.
    Han, F., Seiffert, G., Zhao, Y., & Gibbs, B. (2003). Acoustic absorption behaviour of an open-celled aluminium foam. Journal of Physics D: Applied Physics, 36, 294.
    Hashin, Z., & Shtrikman, S. (1962). A Variational Approach to the Theory of the Effective Magnetic Permeability of Multiphase Materials. Journal of Applied Physics, 33(10), 3125-3131.
    Huang, J. S., & Huang, Z. H. (2000). Fatigue of cement foams in axial compression. Journal of Materials Science, 35(17), 4385-4391.
    Huang, J. S., & Liu, K. D. (2001). Mechanical properties of cement foams in shear. Journal of Materials Science, 36(3), 771-777.
    Huang, W. C., & Ng, C. F. (1998). Sound Insulation Improvement using Honeycomb Sandwich Panels. Applied Acoustics, 53(1), 163-177.
    Jaouen, L., Renault, A., & Deverge, M. (2008). Elastic and damping characterizations of acoustical porous materials: Available experimental methods and applications to a melamine foam. Applied Acoustics, 69(12), 1129-1140.
    Kinsler, L. E., Frey, A. R., Coppens, A. B., & Sanders, J. V. (1999). Fundamentals of Acoustics: John Wiley & Sons.
    Lai, W. J. (1999). Study on the attenuation of sound propagating through bubbly liquids at arbitrary gas-volume fraction. (Master), National Cheng Kung University, Tainan, Taiwan, R.O.C.
    Lee, C. M., & Wang, Y. S. (2006). A prediction method of the acoustical properties of multilayered noise control materials in standing wave-duct systems. Journal of Sound and Vibration, 298(1–2), 350-365.
    MEHTA, P. K. (2001). Reducing the environmental impact of concrete. Concrete International, 23(10), 61-66.
    Mindess, S., Young, J. F., & Darwin, D. (2003). Concrete: Prentica Hall.
    Narayanan, N., & Ramamurthy, K. (2000). Structure and properties of aerated concrete: a review. Cement & Concrete Composites, 22, 321-329.
    Perera, D. S., Aly, Z., Vance, E. R., & Mizumo, M. (2005). Immobilization of Pb in a geopolymer matrix. Journal of the American Ceramic Society, 88(9), 2586-2588.
    Perna, I., Hanzlicek, T., Straka, P., & Steinerova, M. (2009). Acoustic Absorption of Geopolymer/Sand Mixture. Ceramics-Silikaty, 53(1), 48-51.
    Phair, J. W., van Deventer, J. S. J., & Smith, J. D. (2004). Effect of Al source and alkali activation on Pb and Cu immobilisation in fly-ash based “geopolymers”. Applied Geochemistry, 19(3), 423-434.
    Roy, D. M. (1999). Alkali-activated cements: Opportunities and challenges. Cement and Concrete Research, 29, 249-254.
    Sagartzazu, X., Hervella-Nieto, L., & Pagalday, J. M. (2008). Review in sound absorbing materials. Archives of Computational Methods in Engineering, 15(3), 311-342.
    Tadeu, A., & AntÓNio, J. M. P. (2002). Acoustic insulation of single panel walls provided by analytical expressions versus the mass law. Journal of Sound and Vibration, 257(3), 457-475.
    Tadeu, A. J. B., & Mateus, D. M. R. (2001). Sound transmission through single, double and triple glazing. Experimental evaluation. Applied Acoustics, 62(3), 307-325.
    Tarn, J. Q. (1980). On the thermal conductivity of composite materials. Paper presented at the National Science Council, Proceedings.
    Tonyan, T. D., & Gibson, L. J. (1992). Structure and mechanics of cement foams. Journal of Materials Science, 27, 6371-6378.
    Xu, H., & Van Deventer, J. S. J. (2000). The geopolymerisation of alumino-silicate minerals. International Journal of Mineral Processing, 59(3), 247-266.
    Yan, Z. J., & He, Y. J. (1991). Foam concrete practical production technologies: Chemical Industry Press.
    Yip, C. K., Lukey, G. C., Provis, J. L., & van Deventer, J. S. J. (2008). Effect of calcium silicate sources on geopolymerisation. Cement and Concrete Research, 38(4), 554-564.
    Yip, C. K., Lukey, G. C., & van Deventer, J. S. J. (2005). The coexistence of geopolymeric gel and calcium silicate hydrate at the early stage of alkaline activation. Cement and Concrete Research, 35(9), 1688-1697.
    Yu, H. J., Yao, G. C., Wang, X. L., Li, B., Yin, Y., & Liu, K. (2007). Sound insulation property of Al-Si closed-cell aluminum foam bare board material. Transactions of Nonferrous Metals Society of China, 17(1), 93-98.
    Yu, H. J., Yao, G. C., Wang, X. L., Liu, Y. H., & Li, H. B. (2007). Sound insulation property of Al–Si closed-cell aluminum foam sandwich panels. Applied Acoustics, 68(11-12), 1502-1510.

    下載圖示 校內:2019-01-22公開
    校外:2019-01-22公開
    QR CODE