簡易檢索 / 詳目顯示

研究生: 鐘啟瑞
Chung, Chi-Jui
論文名稱: 機械手臂之LQG/LTR控制綜合設計
The LQG/LTR Design Procedure of Nonlinear Robot Manipulators
指導教授: 黃正能
Huang, Zeng-Neng
學位類別: 碩士
Master
系所名稱: 工學院 - 系統及船舶機電工程學系
Department of Systems and Naval Mechatronic Engineering
論文出版年: 2012
畢業學年度: 101
語文別: 中文
論文頁數: 127
中文關鍵詞: 計算扭矩法LQG/LTR理論多變數圓穩定準則
外文關鍵詞: compute torque method, LQG/LTR theory, Multivariable Circle Criterion
相關次數: 點閱:126下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究綜合計算扭矩法與LQG/LTR對非線性機械手臂系統進行多變量強健控制設計,解決存在於系統內部的不確定性與受到隨機干擾情況下的非線性機械手臂系統之控制設計問題,使得非線性機械手臂控制系統具有良好的強健性與滿足性能要求。
    文中首先使用計算扭矩法對非機械手臂系統中各項的估計值進行控制律的設計與回授線性化,並使用變異漸進法對回授系統進行適當的加權擴增;接著使用LQG/LTR設計,使得輸出回授控制器(Output Feedback Controller)能夠趨近於預先設計的目標回授迴路(Target Feedback Loop)。至於非線性機械手臂閉迴路系統在形成Lu’re-type問題後,可討論非線性項之穩定性容許在一定的上界與下界,根據多變數圓穩定準則理論(Multivariable Circle Criterion)探索此控制器之強健性能。
    文末則以倒單擺模型與非線性機械手臂系統為範例,進行電腦模擬,來驗證所設計控制器的有效性與可行性。

    In this thesis, the multivariable robust control of nonlinear manipulator systems based on the compute torque method and the LQG/LTR design procedure was proposed. This controller is able to handle the system that have modeling errors and external disturbances while it keeps the close-loop system robust and satisfies the prescribed performance.
    In this research, the computed toque method is applied to design the proposed control law to form the main control structure by using the benefit of its feedback linearization strategy. The error dynamics of the plant is then formulated to the standard H_2/H_∞ control problem, which is easy to be applied by the LQG/LTR design procedure to find the optimal control gain and observer gains in the process of matching the target loop. With regard to the non-canceling nonlinear terms, the closed-loop system is formulated to the Lu're-type problem form with sector-bounded uncertainties, which is then analyzed by the Multivariable Circle Criterion to discuss the stability and robustness.
    To verify the feasibility of proposed controller, two examples with various external disturbances and parameter uncertainties are made and their computer simulation results show the efficiency and feasibility of the proposed design methodology.

    目錄 摘要 I Abstract II 誌謝 III 目錄 IV 表目錄 VI 圖目錄 VI 第一章 緒論 1 1.1 研究動機 1 1.2 文獻回顧 2 1.3 本文架構 5 第二章 控制理論 6 2.1 範數(norm)與奇異值(singular value) 6 2.1.1 範數線性空間及內積空間 6 2.1.2 時域及頻域空間 7 2.1.3 奇異值之定義與特性 9 2.1.4 H_2-norm與H_∞-norm之意義 10 2.2 性能規格 11 2.3 小增益原理 17 2.4 非線性系統穩定性討論 19 第三章 機械手臂之最佳控制器綜合設計 30 3.1 前言 30 3.2 狀態空間描述 30 3.3 計算扭矩法推導具擾動參數變化之機械手臂誤差方程式 32 3.3.1 計算扭矩法 32 3.3.2 具擾動與參數變化之機械手臂系統 35 3.4 具參數變化與擾動項之機械臂系統控制補償器設計 37 第四章 線性二次高斯/迴路傳輸回復設計(LQG/LTR) 42 4.1 LQR控制器設計(Linear Quadratic Regulator) 42 4.2 LQG / LTR控制器設計 51 4.3 控制器設計流程與流程圖 68 第五章 電腦模擬 82 5.1 倒單擺系統 82 5.1.1 前言 82 5.1.2 LQR之設計應用於倒單擺系統 82 5.1.3 LQG/LTR之設計應用於倒單擺系統 90 5.2 非線性機械手臂控制模擬 94 5.2.1 前言 94 5.2.2 機械手臂系統描述 94 第六章 結論 108 參考文獻 109 表目錄 表4.1 Kalman濾波器之設計規格 52 表5.1 倒單擺系統符號說明表 84 表5.2 機械手臂系統符號說明表 93 圖目錄 圖2.1 回授系統組態 13 圖2.2 里亞普諾夫穩定平衡狀態與典型軌跡 20 圖2.3 (a)為漸近穩定曲線; (b)為邊界穩定曲線; (c)為不穩定曲線 21 圖2.4 (0 < α < β)表示圖 26 圖2.5 (α < 0 < β)表示圖 26 圖2.6 GMB與臨界圓示意圖 29 圖3.1 非線性控制系統架構 37 圖4.1 最佳控制器系統方塊圖 43 圖4.2 在控制通道上有擾動的LQR設計 45 圖4.3 最佳化回授系統 47 圖4.4 Kalman濾波器之結構圖 57 圖4.5 輸出回授LQ架構圖 57 圖4.6 控制器k(s)簡化圖 58 圖4.7 簡化後的LQG架構圖 58 圖4.8 Lu’re type problem方塊圖 61 圖4.9 迴路轉換架構圖 64 圖4.10 雙線性轉換架構圖 64 圖4.11 GMB與臨界圓示意圖 66 圖4.12 rho=1之閉迴路系統步階響應圖 71 圖4.13 不同rho之閉迴路系統步階響應圖 72 圖4.14 閉迴路系統之全狀態步階響應比較圖 72 圖4.15 閉迴路系統之全狀態補償輸出響應圖 73 圖4.16 全狀態補償之閉迴路系統步階響應圖 73 圖4.17 閉迴路系統之單位步階響應圖 75 圖4.18 系統之未補償跟補償後波德圖 75 圖4.19 不同rho之閉迴路系統單位步階響應圖 76 圖4.20 不同rho之波德圖 76 圖4.21 開迴路系統之奈式圖 78 圖4.22 加入白高斯雜訊之開迴路系統奈式圖 78 圖4.23 不同q進行回復之開迴路系統奈式圖 79 圖4.24 閉迴路系統之單位步階響應 79 圖4.25 LQG/LTR之設計於非極小相位系統 81 圖5.1 倒單擺系統 82 圖5.2 倒單擺系統單位步階響應 87 圖5.3 狀態回授圖 87 圖5.4 倒單擺系統之奇異值圖 88 圖5.5 導單擺系統之波德圖 88 圖5.6 倒單擺系統響應曲線 89 圖5.7 倒單擺系統響應曲線 89 圖5.8 結合Kalman濾波器與零平均白高斯雜訊位置與角度輸出圖 92 圖5.9 倒單擺系統輸出回復之奇異值圖 92 圖5.10 倒單擺之位置追蹤圖 93 圖5.11 倒單擺之角度追蹤圖 93 圖5.12 機械手臂系統圖 94 圖5.13 系統輸出響應圖 102 圖5.14 機械手臂運動之目標軌跡圖 102 圖5.15 LTR之機械手臂系統運動軌跡 103 圖5.16 機械手臂輸出回授之奇異值圖 103 圖5.17 控制力V_1訊號圖 104 圖5.18 控制力V_2訊號圖 104 圖5.19 系統誤差訊號圖 105 圖5.20 負載40kg之非線性區間 105 圖5.21 負載60kg之非線性區間 106 圖5.22 負載40kg之GMB與臨界圓 106 圖5.23 負載60kg之GMB與臨界圓 107

    [1] C.N. Hwang, “Formulation of H_2 and H_∞ Optimal Control Problems – A Variational Approach,” Journal of the Chinese Institute of Engineers, Vol. 16, No. 6, pp.853-866 (1993).

    [2] C.N. Hwang, “Synthesis Procedure for Nonlinear Systems,” Proc. Natl. Sci. Counc. ROC(A), Vol. 17, No.4, pp. 279-294 (1993).

    [3] C.N. Hwang, “A Variational Approach to H_2 and H_∞ Control Problems for Linear Nonautonomous System.” Proc. Natl. Sci. Counc. ROC(A), Vol. 17, No.5 pp. 408-422 (1995).

    [4] Cook and P. A., “Modified Multivariable Circle Theorems,” Recent Mathematical Developments in Control: proceedings of a conference, pp.367-372(1979).

    [5] Gunter Stein and Athans M., “The LQG/LTR Procedure for Multivariable Feedback Control Design,” IEEE Transactions on Automatic control, Vol. AC-32, No.2 (1987).

    [6] J.J. Slotine and S.S. Sastry, “Tracking Control of Nonlinear Systems Using Sliding Surfaces, with Application to Robot Manipulators,” Int. J. Control, Vol. 38, No. 2, pp.465-492 (1983).

    [7] Khalil and Hassian K., “Nonlinear systems,” Prentice-Hall, 2nd ed. (1996).

    [8] Kwakernaak and R. Sivan, “Linear optimal control systems,” John Wiley & Sons (1972).

    [9] P.C. Parks and V. Hahn, “Stability Theory,” Prentice Hall International Series in Systems and Control Engineering (1992).

    [10] Jean-Jacques E. Slotine and Weiping Li, “Applied Nonlinear Control,” Prentice-Hall, International Editions (2005).


    [11] Sigurd Skogestad and Ian Postlethwaite, “Multivariable feedback control: analysis and design,” Wiley (2005).

    [12] Ali Saberi, Ben M. Chen and Peddapullaiah Sannuti, “Loop Transfer Recovery: Analysis and Design,” Springer-Verlag London Limited (1993).

    [13] Jeffrey B. Burl, “Linear Optimal Control: H_2 and H_∞ Methods,” 1st ed. Reading, MA: Addison-Wesley (1998).

    [14] Arch W. Naylor and George R. Shell, “Linear Operator Theory in Engineering and Science,” Spinger-Verlag, New York (1982).

    [15] Katsuhiko Ogata, “Modern Control Engineering,” Fourth Edition, Prentice Hall, New Jersey (2002).

    [16] F.C. Schweppe, “Uncertain Dynamic Systems,” Prentice-Hall, Englewood Cliffs, New Jersey (1973).

    [17] C.N. Hwang, “Tracking controllers for robot manipulators,” Master Dissertation, Michigan State University (1986).

    [18] Y.C. Chang, “Robust Tracking Control for Nonlinear MIMO Systems via Fuzzy Approaches,” Automatica, Vol.36, pp.1535- 1545(2000).

    [19] G. Zames, “On H_∞ Optimal Sensitivity Theory for SISO Feedback Systems,” IEEE Transactions on Automatic Control, Vol.AC-29, No.1, pp.9-16 (1984).

    [20] Lihua Xie and Carlos E. de Souza. “Robust H_∞ control for linear systems with norm bounded time varying uncertainty,’’ IEEE Trans. Automat. Control 37, pp.1188-1191 (1992).

    [21] Chen Bor-Sen, Lee Ching-Hsiang and Hang Yeong-Chan, “H_∞ Tracking Design of Uncertain Nonlinear SISO Systems: Adaptive Fuzzy Approach,” IEEE, Transaction on Fuzzy Systems, Vol4, No.1 (1996).
    [22] Dingyü Xue and YangQuan Chen and Derek P. Atherton, “Linear Feedback Control: Analysis and Design with MATLAB,” Society for Industrial and Applied Mathematics; 1 edition (2009).

    [23] H.Nyquist, “Regeneration Theory,” Bell System Technic-
    al Journal, Vol.11, pp.126-147 (1932).

    [24] J.G. Ziegler and N.B. Nichols, “Process Lags in Autom-
    atic Control Circuits,” ASME Trans.65, pp.433-44(1943)

    [25] Evans and W.R., “Graphical Analysis of Control systems
    ,” AIEE Trans. Military Electronics, MIL-8, pp.81-93(19
    48).

    [26] Anderson and T.W., “The Statistical Analysis of Time S-eries.” John Wiley and Sons, New York (1971).

    [27] R.E. Kalman, “Contributions to the Therory of Optimal control,” Bol.Soc Mat. Mex.5, pp102-109 (1960).

    [28] M.G. Safonov and M. Athans., “Gain and phase margin for multiloop. LQG regulators.” IEEE Trans. Autom. Control, AC-22(2), pp173-178 (1977).
    [29] H.H. Rosenbrock and A.G.J. Macfarlance, “State-space and multivariable theory,” IEEE, Journal and Magazines, Vol.7, pp583-584 (1972).

    [30] Cruz, J. B. and Perkins, W.R., “A New Approach to the
    Sensitivity Problem in. Multivariable Feedback System
    Design,” IEEE TAC, Vol.9, pp216-223 (1964).

    [31] J.C. Doyle and G. Stein., “Multivariable feedback design: concepts for a classical/modern synthesis.” IEEE TAC, Vol.26, pp4-16 (1981).

    [32] 陳冠良、黃正能,"狀態空間H_∞控制器之迴路整形及其在船上的應用" ,國立成功大學造船暨船舶機械工程研究所碩士論文,1997。
    [33] 楊憲東、葉芳柏,"線性與非線性H_∞控制理論",全華科技圖書股份有限公司,1997。

    [34] 俞克維,"控制系統的分析與設計",新文京開發出版,2004。

    [35] 莊政義,"線性系統設計",國立編譯館,1994。

    下載圖示 校內:2017-11-21公開
    校外:2017-11-21公開
    QR CODE