| 研究生: |
蔡潗錩 Tsai, Ji-Chang |
|---|---|
| 論文名稱: |
塑膠微粒滯留於葡萄牙牡蠣體內之研究 Study on the retention of microplastic in oyster Crassostrea angulata |
| 指導教授: |
邱慈暉
Chiou, Tsyr-Huei |
| 學位類別: |
碩士 Master |
| 系所名稱: |
生物科學與科技學院 - 生命科學系 Department of Life Sciences |
| 論文出版年: | 2022 |
| 畢業學年度: | 110 |
| 語文別: | 中文 |
| 論文頁數: | 56 |
| 中文關鍵詞: | 塑膠微粒 、牡蠣 、淨化 |
| 外文關鍵詞: | microplastic, oyster, depuration |
| 相關次數: | 點閱:252 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來海洋環境中的塑膠微粒 (< 5 mm) 汙染仍持續累積而增加,並且透過水產品進入食物鏈,對消費者造成健康風險。在水產品中,國民飲食習慣中常見且食用過程前不會去除腸胃道的濾食性貝類暴露風險更高。由於牡蠣可能在生活水域積聚和濃縮汙染物,因此通常會在相對乾淨的海域採集或養殖貝類,透過牡蠣的生物特性淨化 (depuration),許多人會將牡蠣放置在乾淨的海水中,使牡蠣進行正常的濾水活動幾個小時到幾天,讓體內汙染物將低至一定程度,降低汙染帶來的致病風險,提升食品安全性。最近許多研究發現,無論是野生或養殖的牡蠣,都普遍存在塑膠微粒的汙染。本研究為了避免人類從水產品中攝入大量的塑膠微粒,以台灣南部地區養殖的葡萄牙牡蠣 (Crassostrea angulata) 為實驗材料,使用自製之不規則狀螢光塑膠微粒,探討葡萄牙牡蠣暴露於塑膠微粒後,在沒有食物供給的情況下,能否利用牡蠣淨化之特性來降低其體內塑膠微粒含量,並根據其糞便及環境中的水樣調查可能的排泄路徑。結果顯示,牡蠣暴露於每公升3050個聚苯乙烯 (polystyrene) 塑膠微粒中,兩小時後平均攝取到了252.00 ± 31.23個塑膠微粒。在為期96小時的淨化 (depuration) 過程中,於48小時即降低了78.42%的塑膠微粒。牡蠣排泄聚苯乙烯塑膠微粒為混合於糞便中排出,但隨著時間增加而呈遞減趨勢,在沒有食物供給的情況下,可能會排放至環境 (水體) 中,且可能再次循環而被牡蠣攝食。本研究顯示,在沒有食物供給的情況下,淨化仍是減少葡萄牙牡蠣中尺寸介於5~100 μm聚苯乙烯塑膠微粒的有效方法,且最有效且經濟的淨化時間為48小時,在排泄的過程中,除了混合於糞便中排出外,亦可能會回到環境中,再次被牡蠣攝入。
One major fear about marine plastic pollution is that plastic particles can secretly enter the human body through the consumption of filter feeders such as oysters or mussels. To reduce contaminants such as sand, bacteria, or fecal matter, it is a common practice to depurate shellfish before eating. This study investigated whether the Portuguese oyster Crassostrea angulata can be decontaminated through the depuration process and if so, how fast. By exposing the oysters to Nile Red dyed polystyrene particles of varying sizes for 2 hours and transferred to clean artificial seawater, the time course of the fluorescent particles in the seawater, oyster feces, and within the oysters were collected for 4 consecutive days. Living in seawater that contains 3050 microplastics/L for two hours, in average, the oysters ingested 252.00 ± 31.23 microplastics. After depuration for 48 hours, only 21.58% of microplastics are retained in their body. By detecting the fluorescent particles outside of the oyster, we found that the microplastics are excreted mainly in feces. However, under food deprivation conditions, the microplastics in the seawater may be ingested by the oysters again.
Anagnosti, L., Varvaresou, A., Pavlou, P., Protopapa, E., & Carayanni, V. (2021). Worldwide actions against plastic pollution from microbeads and microplastics in cosmetics focusing on European policies. Has the issue been handled effectively? Marine pollution bulletin, 162, 111883.
Andrady, A. L. (2011). Microplastics in the marine environment. Marine pollution bulletin, 62(8), 1596-1605.
Arthur, C., Baker, J., & Bamford, H. (2009). Proceedings of the international research workshop on the occurrence, effects, and fate of microplastic marine debris, September 9-11, 2008.
Atugoda, T., Wijesekara, H., Werellagama, D., Jinadasa, K., Bolan, N. S., & Vithanage, M. (2020). Adsorptive interaction of antibiotic ciprofloxacin on polyethylene microplastics: Implications for vector transport in water. Environmental Technology & Innovation, 19, 100971.
Avio, C. G., Gorbi, S., Milan, M., Benedetti, M., Fattorini, D., d'Errico, G., Pauletto, M., Bargelloni, L., & Regoli, F. (2015). Pollutants bioavailability and toxicological risk from microplastics to marine mussels. Environmental pollution, 198, 211-222.
Beninger, P. G., Valdizan, A., Decottignies, P., & Cognie, B. (2008). Impact of seston characteristics on qualitative particle selection sites and efficiencies in the pseudolamellibranch bivalve Crassostrea gigas. Journal of Experimental Marine Biology and Ecology, 360(1), 9-14.
Boucher, J., & Friot, D. (2017). Primary microplastics in the oceans: a global evaluation of sources (Vol. 10). Iucn Gland, Switzerland.
Bowley, J., Baker-Austin, C., Porter, A., Hartnell, R., & Lewis, C. (2021). Oceanic hitchhikers–assessing pathogen risks from marine microplastic. Trends in microbiology, 29(2), 107-116.
Browne, M. A., Crump, P., Niven, S. J., Teuten, E., Tonkin, A., Galloway, T., & Thompson, R. (2011). Accumulation of microplastic on shorelines woldwide: sources and sinks. Environmental science & technology, 45(21), 9175-9179.
Browne, M. A., Dissanayake, A., Galloway, T. S., Lowe, D. M., & Thompson, R. C. (2008). Ingested microscopic plastic translocates to the circulatory system of the mussel, Mytilus edulis (L.). Environmental science & technology, 42(13), 5026-5031.
Chu, F.-L., & Hale, R. (1994). Relationship between pollution and susceptibility to infectious disease in the eastern oyster, Crassostrea virginica. Marine Environmental Research, 38(4), 243-256.
Coen, L. D., Brumbaugh, R. D., Bushek, D., Grizzle, R., Luckenbach, M. W., Posey, M. H., Powers, S. P., & Tolley, S. G. (2007). Ecosystem services related to oyster restoration. Marine Ecology Progress Series, 341, 303-307.
Cognie, B., Barillé, L., Massé, G., & Beninger, P. G. (2003). Selection and processing of large suspended algae in the oyster Crassostrea gigas. Marine Ecology Progress Series, 250, 145-152.
Cox, K. D., Covernton, G. A., Davies, H. L., Dower, J. F., Juanes, F., & Dudas, S. E. (2019). Human consumption of microplastics. Environmental science & technology, 53(12), 7068-7074.
Détrée, C., & Gallardo-Escárate, C. (2018). Single and repetitive microplastics exposures induce immune system modulation and homeostasis alteration in the edible mussel Mytilus galloprovincialis. Fish & shellfish immunology, 83, 52-60.
Danopoulos, E., Jenner, L. C., Twiddy, M., & Rotchell, J. M. (2020). Microplastic contamination of seafood intended for human consumption: a systematic review and meta-analysis. Environmental health perspectives, 128(12), 126002.
De Witte, B., Devriese, L., Bekaert, K., Hoffman, S., Vandermeersch, G., Cooreman, K., & Robbens, J. (2014). Quality assessment of the blue mussel (Mytilus edulis): Comparison between commercial and wild types. Marine pollution bulletin, 85(1), 146-155.
Deng, Y., Yan, Z., Shen, R., Wang, M., Huang, Y., Ren, H., Zhang, Y., & Lemos, B. (2020). Microplastics release phthalate esters and cause aggravated adverse effects in the mouse gut. Environment international, 143, 105916.
Du, F., Cai, H., Zhang, Q., Chen, Q., & Shi, H. (2020, 2020/11/15/). Microplastics in take-out food containers. Journal of hazardous materials, 399, 122969. https://doi.org/https://doi.org/10.1016/j.jhazmat.2020.122969
Du, H., Xie, Y., & Wang, J. (2021). Microplastic degradation methods and corresponding degradation mechanism: Research status and future perspectives. Journal of hazardous materials, 418, 126377.
EFSA. (2016). Presence of microplastics and nanoplastics in food, with particular focus on seafood. Efsa Journal, 14(6), e04501.
Farrell, P., & Nelson, K. (2013). Trophic level transfer of microplastic: Mytilus edulis (L.) to Carcinus maenas (L.). Environmental pollution, 177, 1-3.
Farrington, J. W., Tripp, B. W., Tanabe, S., Subramanian, A., Sericano, J. L., Wade, T. L., & Knap, A. H. (2016). Edward D. Goldberg's proposal of “the mussel watch”: reflections after 40 years. Marine pollution bulletin, 110(1), 501-510.
Frias, J., & Nash, R. (2019). Microplastics: finding a consensus on the definition. Marine pollution bulletin, 138, 145-147.
Gall, S. C., & Thompson, R. C. (2015). The impact of debris on marine life. Marine pollution bulletin, 92(1-2), 170-179.
Galloway, T. S. (2015). Micro-and nano-plastics and human health. In Marine anthropogenic litter (pp. 343-366). Springer, Cham.
Galloway, T. S., Cole, M., & Lewis, C. (2017). Interactions of microplastic debris throughout the marine ecosystem. Nature ecology & evolution, 1(5), 1-8.
Galtsoff, P. S. (1964). The American oyster, Crassostrea virginica gmelin (Vol. 64). US Government Printing Office.
Gardon, T., Reisser, C. l., Soyez, C., Quillien, V., & Le Moullac, G. (2018). Microplastics affect energy balance and gametogenesis in the pearl oyster Pinctada margaritifera. Environmental science & technology, 52(9), 5277-5286.
Gilby, B. L., Olds, A. D., Peterson, C. H., Connolly, R. M., Voss, C. M., Bishop, M. J., Elliott, M., Grabowski, J. H., Ortodossi, N. L., & Schlacher, T. A. (2018). Maximizing the benefits of oyster reef restoration for finfish and their fisheries. Fish and Fisheries, 19(5), 931-947.
Goodman, K. E., Hare, J. T., Khamis, Z. I., Hua, T., & Sang, Q.-X. A. (2021). Exposure of human lung cells to polystyrene microplastics significantly retards cell proliferation and triggers morphological changes. Chemical Research in Toxicology, 34(4), 1069-1081.
Gosling, E. (2008). Bivalve molluscs: biology, ecology and culture. John Wiley & Sons.
Grabowski, J. H., Brumbaugh, R. D., Conrad, R. F., Keeler, A. G., Opaluch, J. J., Peterson, C. H., Piehler, M. F., Powers, S. P., & Smyth, A. R. (2012). Economic valuation of ecosystem services provided by oyster reefs. Bioscience, 62(10), 900-909.
Graham, P., Palazzo, L., de Lucia, G. A., Telfer, T. C., Baroli, M., & Carboni, S. (2019). Microplastics uptake and egestion dynamics in Pacific oysters, Magallana gigas (Thunberg, 1793), under controlled conditions. Environmental pollution, 252, 742-748.
Green, D. S., Boots, B., O’Connor, N. E., & Thompson, R. (2017). Microplastics affect the ecological functioning of an important biogenic habitat. Environmental science & technology, 51(1), 68-77.
Guilhermino, L., Vieira, L. R., Ribeiro, D., Tavares, A. S., Cardoso, V., Alves, A., & Almeida, J. M. (2018). Uptake and effects of the antimicrobial florfenicol, microplastics and their mixtures on freshwater exotic invasive bivalve Corbicula fluminea. Science of the Total Environment, 622, 1131-1142.
Hahladakis, J. N., Velis, C. A., Weber, R., Iacovidou, E., & Purnell, P. (2018). An overview of chemical additives present in plastics: Migration, release, fate and environmental impact during their use, disposal and recycling. Journal of hazardous materials, 344, 179-199.
Hartmann, N. B., Huffer, T., Thompson, R. C., Hassellöv, M., Verschoor, A., Daugaard, A. E., Rist, S., Karlsson, T., Brennholt, N., & Cole, M. (2019). Are we speaking the same language? Recommendations for a definition and categorization framework for plastic debris.
Hernandez, L. M., Xu, E. G., Larsson, H. C. E., Tahara, R., Maisuria, V. B., & Tufenkji, N. (2019, 2019/11/05). Plastic Teabags Release Billions of Microparticles and Nanoparticles into Tea. Environmental science & technology, 53(21), 12300-12310. https://doi.org/10.1021/acs.est.9b02540
Horton, A. A., Walton, A., Spurgeon, D. J., Lahive, E., & Svendsen, C. (2017). Microplastics in freshwater and terrestrial environments: evaluating the current understanding to identify the knowledge gaps and future research priorities. Science of the Total Environment, 586, 127-141.
Hsiao, S.-T., Chuang, S.-C., Chen, K.-S., Ho, P.-H., Wu, C.-L., & Chen, C. A. (2016). DNA barcoding reveals that the common cupped oyster in Taiwan is the Portuguese oyster Crassostrea angulata (Ostreoida; Ostreidae), not C. gigas. Scientific reports, 6(1), 1-11.
Huang, Z., Weng, Y., Shen, Q., Zhao, Y., & Jin, Y. (2021). Microplastic: A potential threat to human and animal health by interfering with the intestinal barrier function and changing the intestinal microenvironment. Science of the Total Environment, 785, 147365.
Jambeck, J. R., Geyer, R., Wilcox, C., Siegler, T. R., Perryman, M., Andrady, A., Narayan, R., & Law, K. L. (2015). Plastic waste inputs from land into the ocean. Science, 347(6223), 768-771.
Jeong, C.-B., Kang, H.-M., Lee, M.-C., Kim, D.-H., Han, J., Hwang, D.-S., Souissi, S., Lee, S.-J., Shin, K.-H., & Park, H. G. (2017). Adverse effects of microplastics and oxidative stress-induced MAPK/Nrf2 pathway-mediated defense mechanisms in the marine copepod Paracyclopina nana. Scientific reports, 7(1), 1-11.
Jiang, J.-Q. (2018). Occurrence of microplastics and its pollution in the environment: A review. Sustainable production and consumption, 13, 16-23.
Jiang, X., Lu, K., Tunnell, J. W., & Liu, Z. (2021). The impacts of weathering on concentration and bioaccessibility of organic pollutants associated with plastic pellets (nurdles) in coastal environments. Marine pollution bulletin, 170, 112592.
Kane, I. A., & Clare, M. A. (2019). Dispersion, accumulation, and the ultimate fate of microplastics in deep-marine environments: A review and future directions. Frontiers in earth science, 7, 80.
Kedzierski, M., Lechat, B., Sire, O., Le Maguer, G., Le Tilly, V., & Bruzaud, S. (2020, 2020/06/01/). Microplastic contamination of packaged meat: Occurrence and associated risks. Food Packaging and Shelf Life, 24, 100489. https://doi.org/https://doi.org/10.1016/j.fpsl.2020.100489
Kennedy, V. S., Newell, R. I., & Eble, A. F. (1996). The eastern oyster: Crassostrea virginica. University of Maryland Sea Grant College.
Kershaw, P. (2015). Sources, fate and effects of microplastics in the marine environment: a global assessment (1020-4873).
Koelmans, A. A., Redondo-Hasselerharm, P. E., Mohamed Nor, N. H., & Kooi, M. (2020). Solving the nonalignment of methods and approaches used in microplastic research to consistently characterize risk. Environmental science & technology, 54(19), 12307-12315.
Lee, K.-W., Shim, W. J., Kwon, O. Y., & Kang, J.-H. (2013). Size-dependent effects of micro polystyrene particles in the marine copepod Tigriopus japonicus. Environmental science & technology, 47(19), 11278-11283.
Li, J., Yang, D., Li, L., Jabeen, K., & Shi, H. (2015). Microplastics in commercial bivalves from China. Environmental pollution, 207, 190-195.
Li, Q., Sun, C., Wang, Y., Cai, H., Li, L., Li, J., & Shi, H. (2019). Fusion of microplastics into the mussel byssus. Environmental pollution, 252, 420-426.
Liao, C.-P., Chiu, C.-C., & Huang, H.-W. (2021). Assessment of microplastics in oysters in coastal areas of Taiwan. Environmental pollution, 286, 117437.
Liu, S., Li, L., Wang, W., Li, B., & Zhang, G. (2020). Characterization, fluctuation and tissue differences in nutrient content in the Pacific oyster (Crassostrea gigas) in Qingdao, northern China. Aquaculture Research, 51(4), 1353-1364.
Liu, X., Shi, H., Xie, B., Dionysiou, D. D., & Zhao, Y. (2019). Microplastics as both a sink and a source of bisphenol A in the marine environment. Environmental science & technology, 53(17), 10188-10196.
Luna-Acosta, A., Renault, T., Thomas-Guyon, H., Faury, N., Saulnier, D., Budzinski, H., Le Menach, K., Pardon, P., Fruitier-Arnaudin, I., & Bustamante, P. (2012). Detection of early effects of a single herbicide (diuron) and a mix of herbicides and pharmaceuticals (diuron, isoproturon, ibuprofen) on immunological parameters of Pacific oyster (Crassostrea gigas) spat. Chemosphere, 87(11), 1335-1340.
Møhlenberg, F., & Riisgård, H. U. (1978). Efficiency of particle retention in 13 species of suspension feeding bivalves. Ophelia, 17(2), 239-246.
Mafra Jr, L. L., Bricelj, V. M., & Ward, J. E. (2009). Mechanisms contributing to low domoic acid uptake by oysters feeding on Pseudo-nitzschia cells. II. Selective rejection. Aquatic Biology, 6, 213-226.
Martinez-Albores, A., Lopez-Santamarina, A., Rodriguez, J. A., Ibarra, I. S., Mondragón, A. d. C., Miranda, J. M., Lamas, A., & Cepeda, A. (2020). Complementary Methods to Improve the Depuration of Bivalves: A Review. Foods, 9(2), 129. https://www.mdpi.com/2304-8158/9/2/129
Naik, R. K., Naik, M. M., D'Costa, P. M., & Shaikh, F. (2019). Microplastics in ballast water as an emerging source and vector for harmful chemicals, antibiotics, metals, bacterial pathogens and HAB species: A potential risk to the marine environment and human health. Marine pollution bulletin, 149, 110525.
Nelms, S. E., Galloway, T. S., Godley, B. J., Jarvis, D. S., & Lindeque, P. K. (2018). Investigating microplastic trophic transfer in marine top predators. Environmental pollution, 238, 999-1007.
Oliveira, P., Barboza, L. G. A., Branco, V., Figueiredo, N., Carvalho, C., & Guilhermino, L. (2018). Effects of microplastics and mercury in the freshwater bivalve Corbicula fluminea (Müller, 1774): filtration rate, biochemical biomarkers and mercury bioconcentration. Ecotoxicology and environmental safety, 164, 155-163.
Peeken, I., Primpke, S., Beyer, B., Gütermann, J., Katlein, C., Krumpen, T., Bergmann, M., Hehemann, L., & Gerdts, G. (2018). Arctic sea ice is an important temporal sink and means of transport for microplastic. Nature communications, 9(1), 1-12.
PlasticsEurope. (2017). Plastics – the Facts 2017.
Prata, J. C., Alves, J. R., da Costa, J. P., Duarte, A. C., & Rocha-Santos, T. (2020). Major factors influencing the quantification of Nile Red stained microplastics and improved automatic quantification (MP-VAT 2.0). Science of the Total Environment, 719, 137498.
Prata, J. C., Reis, V., Matos, J. T., da Costa, J. P., Duarte, A. C., & Rocha-Santos, T. (2019). A new approach for routine quantification of microplastics using Nile Red and automated software (MP-VAT). Science of the Total Environment, 690, 1277-1283.
Qu, X., Su, L., Li, H., Liang, M., & Shi, H. (2018). Assessing the relationship between the abundance and properties of microplastics in water and in mussels. Science of the Total Environment, 621, 679-686.
Ragusa, A., Svelato, A., Santacroce, C., Catalano, P., Notarstefano, V., Carnevali, O., Papa, F., Rongioletti, M. C. A., Baiocco, F., & Draghi, S. (2021). Plasticenta: First evidence of microplastics in human placenta. Environment international, 146, 106274.
Ramsperger, A., Narayana, V. K. B., Groß, W., Mohanraj, J., Thelakkat, M., Greiner, A., Schmalz, H., Kress, H., & Laforsch, C. (2020). Environmental exposure enhances the internalization of microplastic particles into cells. Science advances, 6(50), eabd1211.
Ribeiro, F., Garcia, A. R., Pereira, B. P., Fonseca, M., Mestre, N. C., Fonseca, T. G., Ilharco, L. M., & Bebianno, M. J. (2017). Microplastics effects in Scrobicularia plana. Marine pollution bulletin, 122(1-2), 379-391.
Rist, S. E., Assidqi, K., Zamani, N. P., Appel, D., Perschke, M., Huhn, M., & Lenz, M. (2016). Suspended micro-sized PVC particles impair the performance and decrease survival in the Asian green mussel Perna viridis. Marine pollution bulletin, 111(1-2), 213-220.
Rochman, C. M., Brookson, C., Bikker, J., Djuric, N., Earn, A., Bucci, K., Athey, S., Huntington, A., McIlwraith, H., & Munno, K. (2019). Rethinking microplastics as a diverse contaminant suite. Environmental Toxicology and Chemistry, 38(4), 703-711.
Rochman, C. M., Tahir, A., Williams, S. L., Baxa, D. V., Lam, R., Miller, J. T., Teh, F.-C., Werorilangi, S., & Teh, S. J. (2015). Anthropogenic debris in seafood: Plastic debris and fibers from textiles in fish and bivalves sold for human consumption. Scientific reports, 5(1), 1-10.
Ryan, P. G., Moore, C. J., Van Franeker, J. A., & Moloney, C. L. (2009). Monitoring the abundance of plastic debris in the marine environment. Philosophical Transactions of the Royal Society B: Biological Sciences, 364(1526), 1999-2012.
Schymanski, D., Goldbeck, C., Humpf, H.-U., & Fürst, P. (2018, 2018/02/01/). Analysis of microplastics in water by micro-Raman spectroscopy: Release of plastic particles from different packaging into mineral water. Water research, 129, 154-162. https://doi.org/https://doi.org/10.1016/j.watres.2017.11.011
Shahul Hamid, F., Bhatti, M. S., Anuar, N., Anuar, N., Mohan, P., & Periathamby, A. (2018). Worldwide distribution and abundance of microplastic: how dire is the situation? Waste Management & Research, 36(10), 873-897.
Shan, S., Zhang, Y., Zhao, H., Zeng, T., & Zhao, X. (2022). Polystyrene nanoplastics penetrate across the blood-brain barrier and induce activation of microglia in the brain of mice. Chemosphere, 298, 134261.
Simon, M., van Alst, N., & Vollertsen, J. (2018). Quantification of microplastic mass and removal rates at wastewater treatment plants applying Focal Plane Array (FPA)-based Fourier Transform Infrared (FT-IR) imaging. Water research, 142, 1-9.
Sivan, A. (2011). New perspectives in plastic biodegradation. Current Opinion in Biotechnology, 22(3), 422-426.
Sjollema, S. B., Redondo-Hasselerharm, P., Leslie, H. A., Kraak, M. H., & Vethaak, A. D. (2016). Do plastic particles affect microalgal photosynthesis and growth? Aquatic toxicology, 170, 259-261.
Statista. (2021). Production of Plastics Worldwide from 1950 to 2019 (in Million Metric Tons).
Sussarellu, R., Suquet, M., Thomas, Y., Lambert, C., Fabioux, C., Pernet, M. E. J., Le Goïc, N., Quillien, V., Mingant, C., & Epelboin, Y. (2016). Oyster reproduction is affected by exposure to polystyrene microplastics. Proceedings of the national academy of sciences, 113(9), 2430-2435.
Talvitie, J., Mikola, A., Setälä, O., Heinonen, M., & Koistinen, A. (2017). How well is microlitter purified from wastewater?–A detailed study on the stepwise removal of microlitter in a tertiary level wastewater treatment plant. Water research, 109, 164-172.
Tan, K., Ma, H., Li, S., & Zheng, H. (2020). Bivalves as future source of sustainable natural omega-3 polyunsaturated fatty acids. Food chemistry, 311, 125907.
Tan, X., Yu, X., Cai, L., Wang, J., & Peng, J. (2019). Microplastics and associated PAHs in surface water from the Feilaixia Reservoir in the Beijiang River, China. Chemosphere, 221, 834-840.
Teuten, E. L., Saquing, J. M., Knappe, D. R., Barlaz, M. A., Jonsson, S., Björn, A., Rowland, S. J., Thompson, R. C., Galloway, T. S., & Yamashita, R. (2009). Transport and release of chemicals from plastics to the environment and to wildlife. Philosophical Transactions of the Royal Society B: Biological Sciences, 364(1526), 2027-2045.
Thompson, R. C., Olsen, Y., Mitchell, R. P., Davis, A., Rowland, S. J., John, A. W., McGonigle, D., & Russell, A. E. (2004). Lost at sea: where is all the plastic? Science, 304(5672), 838-838.
Thompson, R. C., Swan, S. H., Moore, C. J., & Vom Saal, F. S. (2009). Our plastic age. 364(1526), 1973-1976.
Turner, A. (2022). PBDEs in the marine environment: Sources, pathways and the role of microplastics. Environmental pollution, 118943.
Vahl, O. (1972). Efficiency of particle retention in Mytilus edulis L. Ophelia, 10(1), 17-25.
Van Cauwenberghe, L., Claessens, M., Vandegehuchte, M. B., & Janssen, C. R. (2015). Microplastics are taken up by mussels (Mytilus edulis) and lugworms (Arenicola marina) living in natural habitats. Environmental pollution, 199, 10-17.
Van Cauwenberghe, L., & Janssen, C. R. (2014). Microplastics in bivalves cultured for human consumption. Environmental pollution, 193, 65-70.
Vaughn, C. C., & Hoellein, T. J. (2018). Bivalve impacts in freshwater and marine ecosystems. Annual Review of Ecology, Evolution, and Systematics, 49, 183-208.
Vieira, K. S., Neto, J. A. B., Crapez, M. A. C., Gaylarde, C., da Silva Pierri, B., Saldaña-Serrano, M., Bainy, A. C. D., Nogueira, D. J., & Fonseca, E. M. (2021). Occurrence of microplastics and heavy metals accumulation in native oysters Crassostrea Gasar in the Paranaguá estuarine system, Brazil. Marine pollution bulletin, 166, 112225.
Wagner, M., Scherer, C., Alvarez-Muñoz, D., Brennholt, N., Bourrain, X., Buchinger, S., Fries, E., Grosbois, C., Klasmeier, J., & Marti, T. (2014). Microplastics in freshwater ecosystems: what we know and what we need to know. Environmental Sciences Europe, 26(1), 1-9.
Walkinshaw, C., Lindeque, P. K., Thompson, R., Tolhurst, T., & Cole, M. (2020). Microplastics and seafood: lower trophic organisms at highest risk of contamination. Ecotoxicology and environmental safety, 190, 110066.
Wang, Q., Zhang, Y., Wangjin, X., Wang, Y., Meng, G., & Chen, Y. (2020). The adsorption behavior of metals in aqueous solution by microplastics effected by UV radiation. Journal of Environmental Sciences, 87, 272-280.
Wang, S., Hu, M., Zheng, J., Huang, W., Shang, Y., Fang, J. K.-H., Shi, H., & Wang, Y. (2021). Ingestion of nano/micro plastic particles by the mussel Mytilus coruscus is size dependent. Chemosphere, 263, 127957.
Ward, J., Levinton, J., Shumway, S., & Cucci, T. (1998). Particle sorting in bivalves: in vivo determination of the pallial organs of selection. Marine Biology, 131(2), 283-292.
Ward, J. E., & Kach, D. J. (2009). Marine aggregates facilitate ingestion of nanoparticles by suspension-feeding bivalves. Marine Environmental Research, 68(3), 137-142.
Ward, J. E., Levinton, J. S., Shumway, S. E., & Cucci, T. (1997). Site of particle selection in a bivalve mollusc. Nature, 390(6656), 131-132.
Ward, J. E., & Shumway, S. E. (2004). Separating the grain from the chaff: particle selection in suspension-and deposit-feeding bivalves. Journal of Experimental Marine Biology and Ecology, 300(1-2), 83-130.
Ward, J. E., Zhao, S., Holohan, B. A., Mladinich, K. M., Griffin, T. W., Wozniak, J., & Shumway, S. E. (2019). Selective ingestion and egestion of plastic particles by the blue mussel (Mytilus edulis) and eastern oyster (Crassostrea virginica): implications for using bivalves as bioindicators of microplastic pollution. Environmental science & technology, 53(15), 8776-8784.
Watts, A. J., Lewis, C., Goodhead, R. M., Beckett, S. J., Moger, J., Tyler, C. R., & Galloway, T. S. (2014). Uptake and retention of microplastics by the shore crab Carcinus maenas. Environmental science & technology, 48(15), 8823-8830.
Wegner, A., Besseling, E., Foekema, E. M., Kamermans, P., & Koelmans, A. A. (2012). Effects of nanopolystyrene on the feeding behavior of the blue mussel (Mytilus edulis L.). Environmental Toxicology and Chemistry, 31(11), 2490-2497.
Wijsman, J., Troost, K., Fang, J., & Roncarati, A. (2019). Global production of marine bivalves. Trends and challenges. In Goods and services of marine bivalves (pp. 7-26). Springer, Cham.
Wright, S. L., Ulke, J., Font, A., Chan, K. L. A., & Kelly, F. J. (2020). Atmospheric microplastic deposition in an urban environment and an evaluation of transport. Environment international, 136, 105411.
Xu, X., Lee, W., Chan, A., Lo, H., Shin, P., & Cheung, S. (2017). Microplastic ingestion reduces energy intake in the clam Atactodea striata. Marine pollution bulletin, 124(2), 798-802.
Yang, L., Qiao, F., Lei, K., Li, H., Kang, Y., Cui, S., & An, L. (2019). Microfiber release from different fabrics during washing. Environmental pollution, 249, 136-143.
Yu, F., Li, Y., Huang, G., Yang, C., Chen, C., Zhou, T., Zhao, Y., & Ma, J. (2020). Adsorption behavior of the antibiotic levofloxacin on microplastics in the presence of different heavy metals in an aqueous solution. Chemosphere, 260, 127650.
Zhang, C., Chen, X., Wang, J., & Tan, L. (2017). Toxic effects of microplastic on marine microalgae Skeletonema costatum: interactions between microplastic and algae. Environmental pollution, 220, 1282-1288.
Zhu, X., Qiang, L., Shi, H., & Cheng, J. (2020). Bioaccumulation of microplastics and its in vivo interactions with trace metals in edible oysters. Marine pollution bulletin, 154, 111079.