| 研究生: |
沈昕緯 Shen, Hsin-Wei |
|---|---|
| 論文名稱: |
臺灣臺南地區大氣氣溶膠及雨水中碳、氮的環境地球化學之研究 Environmental Geochemistry Studies of Carbon and Nitrogen for Aerosols and Rainwater in Tainan, Taiwan |
| 指導教授: |
楊懷仁
Yang, Huai-Jen |
| 共同指導教授: |
羅尚德
Luo, Shang-De |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 地球科學系 Department of Earth Sciences |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 中文 |
| 論文頁數: | 52 |
| 中文關鍵詞: | 氣溶膠 、雨水 、碳 、氮 |
| 外文關鍵詞: | aerosol, rainwater, carbon, nitrogen |
| 相關次數: | 點閱:122 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究測量於臺南市成功大學區域連續採樣之大氣與雨水中之氣溶膠的碳、氮元素,觀察隨時間之變化探討其對空氣品質變化的環境地球化學意義。碳、氮濃度的測量方法為以TOC/TN 分析儀進行高溫燃燒分析法,碳測量所採用的檢測法為非分散式紅外線檢測;氮測量則是使用化學發光法。所採樣之氣溶膠,通過抽氣過濾的方式,以幫浦抽入空氣經過兩層不同孔隙之玻璃纖維濾紙1.6 μm及0.7 μm後通入定量的蒸餾水中。每次採樣時間為一周。在樣本進入儀器量測之前,會將乾沉降樣本置入蒸餾水中震盪離心,分離出可溶相及不可溶相。觀察在不同粒徑下的氣溶膠以及可溶相和不可溶相之碳-氮比值分布情形。雨水樣本則採樣自然降雨後直接進入儀器測量。
結果顯示,1.6 μm氣溶膠樣本大氣中平均濃度為4.01 - 10.73 ppm,而0.7 μm氣溶膠樣本平均濃度為1.24 - 4.42 ppm。1.6 μm、0.7 μm及奈米氣溶膠之碳濃度分別為 39.63 - 112.99 ppb、33.75 - 98.67 ppb及20.07 - 51.05 ppb;而氮濃度則為5.77 - 21.32 ppb、6.31 - 32.99 ppb及3.88 - 22.39;碳-氮比值為 5.21 - 6.87、2.95 - 5.35及1.97 - 5.17。雨水中碳濃度為0.15 - 12.99 ppm,氮濃度為0.30 - 11.21 ppm,碳-氮比值為0.53 - 9.36。
氮主要富集於小粒徑的氣溶膠中,主要來源於汽機車排放氮氧化物廢氣形成之次生顆粒,而0.7 μm及奈米氣溶膠對於碳、氮濃度亦擁有不能忽視之貢獻。臺南地區之碳、氮濃度呈冬高夏低的趨勢,主要受到混合層高度及雨水移除效應的影響。氣溶膠之碳-氮比值主要受到次生顆粒所影響,而混合層高度、降雨頻率及風力皆會影響次生顆粒的生成能力。隨季風所帶來的氣團來源,也會造成氣溶膠組成有季節上的差異。
In this study, we measured the carbon and nitrogen concentrations in aerosols and rainwater collected at Cheng Kung University in south Taiwan and observed the changes over time to explore the changes of the air quality.
We separated aerosols with glass fiber filter papers into size ranges of > 1.6 μm, 1.6-0.7 μm and nano-particle. Using a TOC/TN analyzer, we measured the concentration of carbon and nitrogen, and then calculated the carbon-nitrogen ratio. The values of the carbon-nitrogen ratio were highly related to the secondary particular matter formed in aerosols. The generation of secondary particular matter is controlled by (1) emission source, (2) mixed layer depth, (3) precipitation and (4) residence time of aerosols.
The results showed that the concentrations of carbon in the > 1.6 μm, 1.6-0.7 μm and nano-particle fractions were in the ranges of 39.63 - 112.99 ppb, 33.75 - 98.67 ppb and 20.07 - 51.05 ppb, respectively, whereas those of nitrogen were 5.77 - 21.32 ppb, 6.31 - 32.99 ppb, and 3.88 - 22.39, respectively with carbon/nitrogen ratios of 5.21 - 6.87, 2.95 - 5.35 and 1.97 - 5.17, respectively.
Nitrogen was generally enriched in the secondary particular matter, which was mainly composed of nitrogen oxides from vehicles emission. The concentrations of carbon and nitrogen was higher in summer than in winter. This feature can be explained by the variation in the altitude of the mixed layer and the effects of monsoon. The nitrogen in the secondary particular matter is highly soluble; therefore, subjected to rainwater removal. High carbon/nitrogen ratios were caused by decreasing nitrogen oxides in atmosphere. Lower carbon/nitrogen ratios indicated more secondary particular matters in aerosols.
中文參考文獻
行政院環境保護署,2019,臺灣空氣污染排放量[TEDS10]線源-排放量推估手冊。https://teds.epa.gov.tw/Data/TEDS10.0/%E6%8A%80%E8%A1%93%E6%89%8B%E5%86%8A/TEDS10.0_%E7%B7%9A%E6%BA%90%E6%8A%80%E8%A1%93%E6%89%8B%E5%86%8A.pdf
行政院環境保護署,環境資源資料庫。https://erdb.epa.gov.tw/DataRepository/EnvMonitor/WeatherData.aspx
交通部中央氣象局,觀測資料庫CWB Observation Data Inquire System。https://e-service.cwb.gov.tw/HistoryDataQuery/index.jsp
英文參考文獻
Allison, C. A., Peter, F. D., Jesse, H. K., Douglas R. W., Huffman, J. A., Kenneth, S. D., Ingrid, M. U., Claudia, M., Kimmel J. R., Donna, S., Sun, Y., Zhang, Q., Achim, T., Megan, N., Paul, J. Z., Manjula, R. C., Timothym, B. O. M., Alfarra, M. R., Andre, S. H. P., Josef, D., Jonathan, D., Axel, M., Urs, B., Jose, L. J., 2008, O/C and OM/OC Ratios of Primary, Secondary, and Ambient Organic Aerosols with High-Resolution Time-of-Flight Aerosol Mass Spectrometry. Environment Science and Technology, 42(12), 4478-4485.
Chin, M., Diehl, T., Ginoux, P., Malm, W., 2007, Intercontinental transport of pollution and dust aerosols: implications for regional air quality. Atmospheric Chemistry and Physics, 7, 5501-5517.
Colbeck, I., Harrison, R. M., 1984, Ozone-Econdary Aerosol-Visibility Relationships in North-West England. Science of The Total Environment, 34, 87-100.
Duce, R. A., Mohnen, V. A., Zimmerman, P. R., Grosjean, D., Cautreels, W., Chatfield, R., Jaenicke, R., Ogren, J. A., Pellizzari, E. D., Wallace, G. T., 1983, Organic material in the global troposphere. Reviews of Geophysics, 21(4), 921-952.
Edney, E. O., Driscoll, D. J., Speer, R. E., Weathers, W. S.,
Kleindienst, T. E., Li, W., Smith, D. F., 2000, Impact of aerosol liquid water on secondary organic aerosol yields of irradiated toluene/propylene/NOx/(NH4)2SO4/air mixtures, Atmospheric Environment, 34(23), 3907-3919.
Fuzzi, S., Andreae, M. O., Huebert, B. J., Kulmala, M., Bond, T. C., Boy, M., Doherty, S. J., Guenther, A., Kanakidou, M., Kawamura, K., Kerminen, V. M., Lohmann, U., Russell, L. M., Poschl, U., 2006, Critical assessment of the current state of scientific knowledge, terminology, and research needs concerning the role of organic aerosols in the atmosphere, climate, and global change. Atmospheric Chemistry and Physics, 6, 2017-2038.
Gray, H. A., Cass, G. R., Huntzicker, J. J., Heyerdahl, E. K., Rau, J. A., 1986, Characteristics of Atmospherics Organic and Elemental Carbon Particle Concentrations in Los Angeles. Environment Science and Technology, 20, 580-589.
Goldberg, E. D.,1985, Black Carbon in the Environment, John Wiley & Sons, New York.
Jerrett, M., Burnett, R. T., Ma, R., Pope III, C. A., Krewski, D., Newbold, K. B., Thurston, G., Shi, Y., Finkelstein, N., Calle, E. E., Thun, M. J., 2005, Spatial Analysis of Air Pollution and Mortality in Los Angeles. Epidemiology, 16(6), 727-736
Kaufman, Y. J., Koren, I., Remer, L. A., Rosenfeld, D., Rudich, Y., 2005, The effect of smoke, dust, and pollution aerosol on shallow cloud development over the Atlantic Ocean. Proceedings of the National Academy of Sciences of the United States of America, 102(32), 11207-11212.
Lau, K. M., Li, M. T., 1984, The monsoon of East Asia and its global associations—A survey. Bulletin of the American Meteorological Society, 65(2), 114-125.
Lelieveld, J., Crutzen, P. J., Ramanathan, V., Andreae, M. O., Brenninkmeijer, C. A. M., Campos, T., Cass, G. R., Dickerson, R. R., Fischer, H., de Gouw, J. A., Hansel, A., Jefferson, A., Kley, D., de Laat, A. T. J., Lal, S., Lawrence, M. G., Lobert, J. M., Mayol-Bracero, O. L., Mitra, A. P., Novakov, T., Oltmans, T., Prather, K. A., Reiner, T., Rodhe, H., Scheeren, H. A., Sikka, D., Williams, J., 2001, The Indian Ocean experiment: widespread air pollution from South and Southeast Asia. Science, 291(5506), 1031-1036.
Ming, Y., Russell, L. M.,2005, Organic aerosol effects on fog droplet spectra. Journal of Geophysical Research: Atmospheres, 109, D10.
Ohta, S., Okita, T., 1990, A chemical characterizeation of atmospheric aerosol in Sapporo. Atmospheric Environment, 24, 815-822.
Odum, J. R., Hoffmann, T., Bowman, F., Collins, D., Flagan, R. C., Seinfeld, J. H., 1996, Gas/Particle partitioning and secondary organic aerosol yields. Environment Science and Technology, 30, 2580-2585.
Peluso, N., 2005, The New Bump ‘n’ Grind: Identity, Drag, and the Politics of Performance in the New Burlesque. M.A. Thesis, University of Connecticut.
Penner, J. E., Andreae, M. O., Annegarn, H., Barrie, L., Feichter, J., Hegg, D., 2001, Aerosols, their Direct and Indirect Effects. Climate Change 2001: The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change, 289-348.
Philinis, C., Seinfeld, J. H., 1988, Development and evaluation of an eulerian photochemical gas aerosol model. Atmospheric Environment, 22, 1985-2001.
Pope III, C. A., Burnett, R. T., Thun, M. J., Calle, E. E., Krewski, D., Ito, K., Thurston, G. D., 2002, Lung Cancer, Cardiopulmonary Mortality, and Long-term Exposure to Fine Particulate Air Pollution.. Original Contribution, 287(9), 1132-1141.
Poschl, U., 2005, Atmospheric aerosols: composition, transformation, climate and health effects. Angewandte Chemie Int, Ed., 44, 7520-7540.
Sakugawa, H., Kaplan, I. R., Tsai, W., Cohen, Y., 1990, Atmospheric hydrogen peroxide:
Does it share a role with ozone in degrading air quality? Environment Science and Technology, 24, 1452-1462.
Smith, D. M., Griffin, J. J., Goldberg,E. D., 1975, Spectrometric Method for the Quantitative Determination of Elemental Carbon, Analytical Chemistry,47,233-238.
Song, J. Z., Peng, P. A., Huang, W. L., Black Carbon and Kerogen in Soils and Sediments. 1. Quantification and Characterization. Environmental Science & Technology, 36, 3960-3967.
Sun, Y. L., Zhang, Q., Schwab, J. J., Demerjian, K. L., Chen, W. N., Bae, M. S., Hung, H. M., Hogrefe, O., Frank, B., Rattigan, O. V., Lin, Y. C., 2011, Characterization of the sources and processes of organic and inorganic aerosols in New York city with a high-resolution time-of-flight aerosol mass apectrometer. Atmospheric Chemistry and Physics, 11, 1581-1602.
Tiwaria, S., Srivastava, A. K., Bisht, D. S., Parmita, P., Srivastava, M. K., Attri, S. D., 2013, Diurnal and seasonal variations of black carbon and PM2.5 over New Delhi, India: Influence of meteorology. Atmospheric Research, 125, 50-62.
Verardo, D. J., 1997, Charcoal analysis in marine sediments, Limnology and Oceanography, 42, 192-197.
Whitby, K.T., Cantrell, B. K., 1976, Atmospheric aerosols characteristics and measurement. International Conference on
Environmental Sensing and Assessment (ICESA). Institute of Electrical and Electronic Engineers (IEEE), ICESA, 1-6.
WHO, 2006, Guidelines for air quality. http://www.euro.who.int/Document/E87950.pdf
Wilson, T. R., 1975, Salinity and the major elements of sea-water. Chemical Oceanography, 365-413.
Wilson, W. E., Suh, H. H., 1997, Fine Particles and Coarse Particles: Concentration
Relationships Relevant to Epidemiologic Studies. Journal of the Air & Waste Management Association, 47:12, 1238-1249.
Wolff, G. T., Groblicki, P. J., Cadle, S.H., 1982, Particulate Carbon at Various Locations in the United States. Particulate carbon Atmospheric Life Cycle. Wolff, G.T. and R.L. Klimisch (Eds.), 297-315.
Zhao, T. L., Gong, S. L., Zhang, X.Y., McKendry, I. G., 2003, Modeled size-segregated wet and dry deposition budgets of soil dust aerosol during ACE-Asia 2001: Implications for trans-Pacific transport. Journal of Geophysical Research: Atmospheres, 108, D23.