簡易檢索 / 詳目顯示

研究生: 林岱昀
Lin, Tai-Yun
論文名稱: 考慮決策風格之一般化護理人員排班問題研究
A Study on Generalized Nurse Scheduling Model Considering Decision Making Styles
指導教授: 李旻陽
Li, Min-Yang
學位類別: 碩士
Master
系所名稱: 管理學院 - 工業與資訊管理學系
Department of Industrial and Information Management
論文出版年: 2024
畢業學年度: 112
語文別: 中文
論文頁數: 90
中文關鍵詞: 混合整數規劃決策風格護理人員排班問題基因演算法
外文關鍵詞: Mixed integer programming, Decision-making styles, Nurse scheduling problem, Genetic Algorithm
相關次數: 點閱:83下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在當前的醫療環境中,護理師的快速流失與人手不足問題日益嚴重。一份良好的護士班表對流程效率和工作環境穩定性的貢獻尤其不可忽視;然而,經國際護理協會(International Council of Nurses, ICN) 暨亞洲護理人力論壇 (Asia Workforce Forum, AWFF) 之研究顯示:在2020-2022年期間的COVID -19疫情全球大流行之際,過量壓力導致大量護理師創傷、出現罷工狀況、工作分配不平均、護理人員教育中斷等,使人員短缺問題更加惡化,含有執照的護理人員執業率僅62.7%。因此呼籲各國政府應致力於投資護理教育、領導、就業和服務,以招募和留任更多護理人員,實現全民健康覆蓋,以維護護理人員之權益,提升整體醫療服務績效。而護理師的流失導致新進員工需要面對複雜的醫療情境,使得整個部門始終處於青黃不接的人員短缺狀態。

    本研究為因應以上問題,重新評估和調整護理人員的排班策略,並引進人員決策風格變數 (Decision-Making-Styles, DMS),同時考量國內護理人員適用之最新勞基法規定,以連續時間序列形式融合國內常使用之三班制規範,設置一映射函數設置使班次跟天數之間相互轉換,擬以一創新的數學規劃模型來求解護理人員排班問題,使排班模型更具彈性和人性化,並最大程度地減少人員之間的不適配程度,以期提升整體醫療服務的品質和效率。最後運用混合數學規劃最佳化模型求出可行班表,以及啟發式演算法中的基因演算法進行大規模實例求解本研究之一般化護理人員排班模型。

    In the current medical environment, the rapid turnover and shortage of nursing staff is becoming increasingly serious. A good nurse scheduling is particularly important for the efficiency of processes and the stability of the work environment. However, research by the International Council of Nurses (ICN) and the Asia Workforce Forum (AWFF) has shown that during the global COVID-19 pandemic from 2020 to 2022, excessive stress led to a high incidence of nurse trauma, strikes, uneven work distribution, interruptions in nursing education, and arbitrary rotation among departments, exacerbating the shortage of personnel. The loss of nursing staff has forced new employees to face complex medical situations, keeping the department in a constant state of personnel shortage.
    In response to these challenges, this study re-evaluates and adjusts the scheduling strategies of nursing staff, introducing the Decision-Making Style variable (DMS), and considering the latest labor law regulations applicable to domestic nursing staff. It adopts the commonly used three-shift system in the country, setting up a mapping function to convert shifts and days. The study proposes an innovative mathematical programming model to solve the nursing staff scheduling problem, making the scheduling model more flexible and humanized, with the aim of improving the quality and efficiency of healthcare services. Finally, the study uses a hybrid mathematical programming and genetic algorithm from heuristic algorithms to solve large-scale instances.

    摘要ii 誌謝viii 目錄ix 表目錄xii 圖目錄xiii 第一章、緒論1 1.1 動機與背景1 1.2 研究目的3 1.3 研究範圍4 1.4 研究方法及流程4 1.4.1 研究方法4 1.4.2 研究流程5 第二章、文獻探討7 2.1 人員排班問題 (personnel scheduling problem, PSP) 7 2.1.1 人員排班定義7 2.1.2 人員排班求解方法8 2.2 護理人員排班問題 (nurse scheduling problem, NSP) 9 2.2.1 護理人員排班定義9 2.2.2 護理人員排班型態10 2.2.3 護理人員排班限制13 2.2.4 護理人員排班求解方法16 2.3 人員決策風格 (decision-making styles, DMS) 20 2.3.1 DMS定義21 2.4 基因演算法 (genetic algorithms, GA) 23 2.4.1 基因演算法之概念23 2.4.2 基因演算法之優勢23 2.4.3 基因演算法之流程24 2.4.4 基因演算法之NSP應用28 2.5 小結30 第三章、考慮人員決策風格之護理人員排班模型32 3.1 問題描述32 3.2 問題假設34 3.3 數學符號設定35 3.3.1 參數及集合設定35 3.3.2 決策變數37 3.4 數學模型建構37 3.4.1 目標函數38 3.4.2 限制式設定40 3.5 基因演算法求解46 3.5.1 編碼 (encoding) 46 3.5.2 產生初始解 (initial population) 48 3.5.3 適應度函數 (fitness function) 50 3.5.4 選擇 (selection) 51 3.5.5 交配 (crossover) 51 3.5.6 突變 (mutation) 52 3.5.7 終止條件 (termination condition) 53 第四章、實驗結果55 4.1 原始資料集55 4.1.1 實例結果分析59 4.2 不同規模實例分析60 4.2.1 小型規模隨機實驗結果61 4.2.2 中型規模隨機實驗結果62 4.2.3 大型規模隨機實例結果63 4.3 敏感度分析64 4.3.1 需求人數 Wjk 之敏感度分析64 4.3.2 加班成本 ci '變動之敏感度分析65 4.3.3 不同 ρ 值下加班次數 τ 之敏感度分析66 第五章、結論68 5.1 結論68 5.2 未來研究方向69 參考文獻71

    Abadi, M. Q. H., Rahmati, S., Sharifi, A., & Ahmadi, M. (2021). HSSAGA: Designation and scheduling of nurses for taking care of COVID-19 patients using novel method of Hybrid Salp Swarm Algorithm and Genetic Algorithm. Applied Soft Computing, 108, 107449.
    Aickelin, U., Burke, E. K., & Li, J. (2007). An estimation of distribution algorithm with intelligent local search for rule-based nurse rostering. Journal of the Operational Research Society, 58(12), 1574-1585.
    Aickelin, U., & Dowsland, K. A. (2004). An indirect genetic algorithm for a nurse-scheduling problem. Computers & Operations Research, 31(5), 761-778.
    Aickelin, U., & Dowsland, K. A. (2004). An Indirect Genetic Algorithm for a Nurse Scheduling Problem. Computers & Operations Research, 31(5), 761-778.
    Alfares, H. K. (2004). Survey, Categorization, and Comparison of Recent Tour Scheduling Literature. Annals of Operations Research 127(121-124):145-175.
    Arram, A., & Ayob, M. (2019). A novel multi-parent order crossover in genetic algorithm for combinatorial optimization problems. Computers & Industrial Engineering, 133, 267-274.
    Azadeh, A., Rezaei-Maleka, M., Evazabadiana, F., & M., S. ( 2014). Improved design of CMS by considering operators decision-making styles. International Journal of Production Research.
    Azadeh, A., Zarrin, M., & Hamid, M. (2016). A novel framework for improvement of road accidents considering decision-making styles of drivers in a large metropolitan area. Accident Analysis & Prevention, 87, 17-33.
    Azaiez, M. N., & Al Sharif, S. S. (2005). A 0-1 goal programming model for nurse scheduling. Computers & Operations Research, 32(3), 491-507.
    Baker, K. R. (1976). Workforce Allocation in Cyclical Scheduling Problems: A Survey. Journal of the Operational Research Society, 27, 155-167.
    Burke, E., Cowling, P., De Causmaecker, P., & Vanden Berghe, G. (2001). A memetic approach to the nurse rostering problem. Applied Intelligence, 15(3), 199-214.
    Burke, E. K., & Curtois, T. (2014). New approaches to nurse rostering benchmark instances. European Journal of Operational Research, 237(1), 71-81.
    Burke, E. K., Li, J., & Qu, R. (2010). A hybrid model of integer programming and variable neighbourhood search for highly-constrained nurse rostering problems. European Journal of Operational Research, 203(2), 484-493.
    Causmaecker, P. D., & Berghe, G. V. (2011). A categorisation of nurse rostering problems. Journal of Scheduling, 14, 3–16
    Ceschia, S., Thi Thanh Dang, N., De Causmaecker, P., Haspeslagh, S., & Schaerf, A. (2015). Second International Nurse Rostering Competition (INRC-II) — Problem Description and Rules —.
    Cheang, B., Li, H., Lim, A., & Rodrigues, B. (2003). Nurse rostering problems––a bibliographic survey. European Journal of Operational Research, 151(3), 447-460.
    Cho, S. H., Lee, J. Y., You, S. J., Song, K. J., & Hong, K. J. (2020). Nurse staffing, nurses prioritization, missed care, quality of nursing care, and nurse outcomes. International Journal of Nursing Practice, 26.
    Coffey, L. C., Skipper, J. K., & Jung, F. D. (1988). Nurses and shift work: effects on job performance and job-related stress. Journal of advanced nursing, 13 2, 245-254.
    Dahmen, S., Rekik, M., Soumis, F., & Desaulniers, G. (2020). A two-stage solution approach for personalized multi-department multi-day shift scheduling. European Journal of Operational Research, 280(3), 1051-1063.
    DeCola, P. R., & Riggins, P. (2010). Nurses in the workplace: Expectations and needs. International Nursing Review, 57(3), 335-342.
    Driver, M., Hunsaker, P. L., & Brousseau, K. R. (1998). The dynamic decision maker: five decision styles for executive and business success. .
    Ernst, A. T., Jiang, H., Krishnamoorthy, M., & Sier, D. (2004). Staff scheduling and rostering: A review of applications, methods and models. European Journal of Operational Research, 153(1), 3-27.
    Glass, C. A., & Knight, R. A. (2010). The nurse rostering problem: A critical appraisal of the problem structure. European Journal of Operational Research, 202(2), 379-389.
    Goldberg, D. E. (1989). Genetic Algorithms in Search, Optimization, and Machine Learning.
    Grefenstette, J. J. (1986). Optimization of Control Parameters for Genetic Algorithms. IEEE Trans, 122-128.
    Hadwan, M., Ayob, M., Sabar, N. R., & Qu, R. (2013). A harmony search algorithm for nurse rostering problems. Information Sciences, 233, 126-140.
    Hamid, M., Nasiri, M., Werner, F., Sheikhahmadi, F., & Zhalechian, M. (2019). Operating room scheduling by considering the decision-making styles of surgical team members: A comprehensive approach. Computers & Operations Research, 108, 166-181.
    Hamid, M., Tavakkoli-Moghaddam, R., Golpayegani, F., & Vahedi-Nouri, B. (2019). A multi-objective model for a nurse scheduling problem by emphasizing human factors. Institution of Mechanical Engineers Part H Journal of Engineering in Medicine 234(2).
    Holland, J. H. (1992). Adaptation in Natural and Artificial Systems:an Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence. MIT Press, 39-43.
    INRC Retrieved March 1 from https://nrpcompetition.kuleuven-kulak.be/
    INRC II Retrieved October 17 from https://mobiz.vives.be/inrc2/?page_id=20
    Kendall, J. W. (1975). Hard and Soft Constraints in Linear Programming Omega, 3(6), 709-715.
    Leksakul, K., & Phetsawat, S. (2014). Nurse Scheduling Using Genetic Algorithm. Mathematical Problems in Engineering, 2014.
    Lin, P. C., Chen, C. H., Pan, S. M., Chen, Y. M., Pan, C. H., Hung, H. C., & Wu, M. T. (2015). The association between rotating shift work and increased occupational stress in nurses. J Occup Health, 57(4), 307-315.
    Maenhout, B., & Vanhoucke, M. (2013). An integrated nurse staffing and scheduling analysis for longer-term nursing staff allocation problems. Omega, 41(2), 485-499.
    McGarry, B. E., Grabowski, D. C., & Barnett, M. L. (2020). Severe Staffing And Personal Protective Equipment Shortages Faced By Nursing Homes During The COVID-19 Pandemic. Health Affairs, 39(10), 1812-1821.
    Miller, H. E., Pierskalla, H. P., & Rsth, G. J. (1976). Nurse Scheduling Using Mathematical Programming. Operations Research 24(5), 857-870.
    Ngoo, C. M., Goh, S. L., Sze, S., Sabar, N. R., Abdullah, S., & Kendall, G. (2022). A Survey of the Nurse Rostering Solution Methodologies: The State-of-the-Art and Emerging Trends. IEEE Access, 10, 56504-56524.
    Ozcan, E. (2005). Memetic algorithms for nurse rostering. In P. Yolum, T. Gungor, F. Gurgen, & C. Ozturan (Eds.), Computer and Information Sciences - Iscis 2005, Proceedings (Vol. 3733, pp. 482-492).
    Puente, J., Gómez, A., Fernández, I., & Priore, P. (2009). Medical doctor rostering problem in a hospital emergency department by means of genetic algorithms. Computers & Industrial Engineering, 56(4), 1232-1242.
    Rahimian, E., Akartunalı, K., & Levine, J. (2017). A hybrid Integer Programming and Variable Neighbourhood Search algorithm to solve Nurse Rostering Problems. European Journal of Operational Research, 258(2), 411-423.
    Santos, H. G., Toffolo, T. A. M., Gomes, R. A. M., & Ribas, S. (2014). Integer Programming Techniques for the Nurse Rostering Problem. Annals of Operations Research.
    Tsai, C. C., & Li, S. H. A. (2009). A two-stage modeling with genetic algorithms for the nurse scheduling problem. Expert Systems with Applications, 36(5), 9506-9512.
    Valouxis, C., Gogos, C., Goulas, G., Alefragis, P., & Housos, E. (2012). A systematic two phase approach for the nurse rostering problem. European Journal of Operational Research, 219(2), 425-433.
    Van den Bergh, J., Beliën, J., De Bruecker, P., Demeulemeester, E., & De Boeck, L. (2013). Personnel scheduling: A literature review. European Journal of Operational Research, 226(3), 367-385.
    Warner, D. M. (1972). A Mathematical Programming Model for Scheduling Nursing Personnel in a Hospital. Management Science.
    Wright, P. D., & Mahar, S. (2013). Centralized nurse scheduling to simultaneously improve schedule cost and nurse satisfaction. Omega, 41(6), 1042-1052.
    Zucchi, G., M., I., & Subramanian, A. (2020). Personnel scheduling during Covid-19 pandemic.
    中華民國護理師護士公會全國聯合會. 111年醫院護理人員薪資及人力調查報告. Retrieved April from https://www.nurse.org.tw/publicUI/H/H10201.aspx?arg=8DC3229C9DD3514030
    台灣護理學會. (2023). The Report on the 21th ICN Asia Workforce Forum (AWFF) & 17th Alliance of Asian Nurses Association (AANA) 2023 年第 21 屆「ICN 亞洲護理人力論壇」 暨第 17 屆「亞洲護理學會聯盟」會議報告.
    台灣護理學會 (Taiwan Nurses Association, TWNA) Retrieved April 17 from https://www.twna.org.tw/
    全國法規資料庫 勞動基準法. Retrieved June 10 from https://law.moj.gov.tw/LawClass/LawAll.aspx?PCode=N0030001
    沈文瑤. (2020). 醫院產業的人員排班與調度問題之研究 -以C地區醫院為例
    衛生福利部. (2024). 勞動基準法下護理排班問答暨合理護理排班指引與範例.

    無法下載圖示 校內:2029-07-15公開
    校外:2029-07-15公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE