簡易檢索 / 詳目顯示

研究生: 廖期楷
Liao, Chi-Kai
論文名稱: ALC1在DNA損傷耐受機制的功能
The function of ALC1 in the DNA damage tolerance pathway
指導教授: 廖泓鈞
Liaw, Hung-Jiun
學位類別: 碩士
Master
系所名稱: 生物科學與科技學院 - 生命科學系
Department of Life Sciences
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 45
中文關鍵詞: DDTpoly(ADP-ribose)ALC1HR
外文關鍵詞: DDT, PAR, ALC1, homologous recombination
相關次數: 點閱:132下載:10
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • DNA損傷耐受機制 (DNA damage tolerance pathway, DDT) 是細胞在DNA複製遇到損傷或障礙時,為了避免複製叉因為複製中斷而瓦解的修復機制。在DDT中跨過損傷的方法有兩種,分別是利用低忠實性聚合酶(low fidelity DNA polymerases) 的translesion synthesis (TLS) 修復途徑,以及利用互補股當模板的template switching (TS) 修復途徑。
    實驗室先前的研究發現PARP1會與TS路徑中的HLTF結合,並且參與姊妹染色體交換(sister chromatid exchange,SCE)的機制,此一機制與同源重組修復機制 (homologous recombination, HR)有關。PARP1是一個酵素,會在DNA損傷處對周遭蛋白,包含自身蛋白,產生poly(ADP-ribosyl)ation (PAR) 的修飾,此修飾是DNA損傷反應機制 (DNA damage response, DDR)中最先啟動的反應之一。ALC1包含macrodomain,會與 PAR修飾的蛋白結合,因此我的研究重點是探討ALC1是否也參與在DNA損傷耐受機制。我們的實驗是利用抗藥性鼻咽癌細胞進行探討,在缺乏ALC1的狀況下抗藥性細胞對化療藥物 (Cisplatin) 的敏感性顯著提升,且在預處理Cisplatin與照射UV兩種條件的DNA fiber實驗中發現,缺乏ALC1的細胞,在受到DNA損壞時,其DNA複製的效率降低,同時增加DNA複製叉停滯的現象,另外也發現缺乏ALC1的細胞其代表同源重組修復的姊妹染色體交換率也會下降,本篇結果顯示在缺乏ALC1的細胞,其DNA損傷耐受機制功能顯著下降,進而影響鼻咽癌細胞的抗藥性。

    To prevent the stalling of DNA replication, the DNA damage tolerance (DDT) pathway is evolved to bypass DNA lesions during DNA replication. There are two mechanisms in the DDT pathway. One is the translesion synthesis (TLS) pathway and the other is the template-switching (TS) pathway. While the TLS pathway is extensive studied, the TS pathway is largely unclear. The current model suggests that the TS pathway bypasses DNA lesions through homologous recombination (HR). However, it is still unclear how HR is incorporated into the TS pathway. Previous studies in our laboratory have demonstrated that chronic treatment of cisplatin can induce chemoresistant phenotype of nasopharyngeal carcinoma cells (NPC) through the enhanced TS pathway. Interestingly, we found that the E3 ligase HLTF can interact with PARP1. The depletion of HLTF and PARP1 sensitizes the chemoresistant NPC cells to cisplatin, significantly increases the number of stalled forks, and reduce sister-chromatid exchange (SCE). In this study, we further extend our understanding of the TS pathway by showing that ALC1 is involved in the TS pathway through the interaction between ALC1 and PARP1. We demonstrate that the depletion of ALC1 sensitizes the chemoresistant NPC cells to cisplatin, significantly increases the number of stalled forks, and reduces the progression of DNA replication in response to DNA lesions. Significantly, the ALC1 deficient cells show reduced SCE, suggesting an impairing of the TS pathway. Taken together, our results suggest that ALC1 is involved in the TS pathway, through the assembly of HLTF, PARP1, and ALC1 complex.

    中文摘要 I Extended abstract II 誌謝 VIII 目錄 IX 縮寫表 XI 壹、導論 1 第一節 前言 1 1-1. DNA損傷反應機制 (DNA damage response, DDR) 1 1-2. 複製叉的停滯 (stalled replication fork) 2 1-3. DNA損傷耐受機制 (DNA damage tolerance pathway, DDT) 的起始 2 1-4. DNA損傷耐受機制下的兩個修復模式 3 1-5. Poly(ADP-ribosyl)ation 與PARP1的功能 4 1-6. 染色質重組酶: ALC1 6 1-7. PARP1藉由同源重組修復影響癌症的化學治療 7 1-8. DNA損傷修復模型: 抗藥性鼻咽癌細胞 (chemoresistant nasopharyngeal carcinoma cells, NPC) 8 第二節 研究動機與目的 9 貳、實驗材料與方法 10 2-1. 細胞培養 10 2-2. 核糖核酸干擾 (RNA interference, RNAi) 10 2-3. 細胞存活率分析 (MTT assay) 11 2-4. 細胞存活率分析 (Colony formation assay) 11 2-5. 定量即時聚合酶連鎖反應 (Quantitative reverse-transcription polymerase chain reaction, qRT-PCR) 11 2-6. 西方點墨法 (Western blotting) 12 2-7. DNA fiber analysis 13 2-8. 姊妹染色體交換分析 (Sister chromatid exchange, SCE) 13 2-9. 共免疫沉澱法 (Co-immunoprecipitation, Co-IP) 14 參、 結果 15 3-1. 降低ALC1蛋白表現量會提升抗藥性癌細胞對化療藥物敏感性 15 3-2. ALC1的缺失會導致抗藥性癌細胞複製後修復機制的效率下降 15 3-3. 缺乏ALC1的抗藥性癌細胞其同源重組修復效率也會下降 16 3-4. 外源性的SHPRH與PARP1有交互作用 17 肆、討論 18 伍、參考文獻 21 Figure 1. ALC1-deficient HONE6 cells are sensitive to cisplatin. 31 Figure 2. The depletion of ALC1 reduces the progression of DNA replication in response to DNA damage.. 35 Figure 3. The ALC1-deficient HONE6 cells show decreasing frequency of sister chromatid exchange (SCE) 37 Figure 4. Exogenous expressed SHPRH can interact with PARP1. 40 Supplementary data 41

    Ahel, D., Z. Horejsi, N. Wiechens, S.E. Polo, E. Garcia-Wilson, I. Ahel, H. Flynn, M. Skehel, S.C. West, S.P. Jackson, T. Owen-Hughes, and S.J. Boulton. 2009. Poly(ADP-ribose)-Dependent Regulation of DNA Repair by the Chromatin Remodeling Enzyme ALC1. Science. 325:1240-1243.
    Ame, J.C., C. Spenlehauer, and G. de Murcia. 2004. The PARP superfamily. BioEssays : news and reviews in molecular, cellular and developmental biology. 26:882-893.
    Audeh, M.W., J. Carmichael, R.T. Penson, M. Friedlander, B. Powell, K.M. Bell-McGuinn, C. Scott, J.N. Weitzel, A. Oaknin, N. Loman, K. Lu, R.K. Schmutzler, U. Matulonis, M. Wickens, and A. Tutt. 2010. Oral poly(ADP-ribose) polymerase inhibitor olaparib in patients with BRCA1 or BRCA2 mutations and recurrent ovarian cancer: a proof-of-concept trial. Lancet (London, England). 376:245-251.
    Bachrati, C.Z., and I.D. Hickson. 2008. RecQ helicases: guardian angels of the DNA replication fork. Chromosoma. 117:219-233.
    Ben Salah, G., I. Hadj Salem, A. Masmoudi, F. Kallabi, H. Turki, F. Fakhfakh, H. Ayadi, and H. Kamoun. 2014. A novel frameshift mutation in BLM gene associated with high sister chromatid exchanges (SCE) in heterozygous family members. Molecular biology reports. 41:7373-7380.
    Broomfield, S., B.L. Chow, and W. Xiao. 1998. MMS2, encoding a ubiquitin-conjugating-enzyme-like protein, is a member of the yeast error-free postreplication repair pathway. Proc Natl Acad Sci U S A. 95:5678-5683.
    Bryant, H.E., N. Schultz, H.D. Thomas, K.M. Parker, D. Flower, E. Lopez, S. Kyle, M. Meuth, N.J. Curtin, and T. Helleday. 2005. Specific killing of BRCA2-deficient tumours with inhibitors of poly(ADP-ribose) polymerase. Nature. 434:913-917.
    Burgers, P.M.J. 2009. Polymerase Dynamics at the Eukaryotic DNA Replication Fork. Journal of Biological Chemistry. 284:4041-4045.
    Burma, S., B.P. Chen, M. Murphy, A. Kurimasa, and D.J. Chen. 2001. ATM phosphorylates histone H2AX in response to DNA double-strand breaks. The Journal of biological chemistry. 276:42462-42467.
    Byun, T.S., M. Pacek, M.C. Yee, J.C. Walter, and K.A. Cimprich. 2005. Functional uncoupling of MCM helicase and DNA polymerase activities activates the ATR-dependent checkpoint. Genes Dev. 19:1040-1052.
    Chan, T.H., L. Chen, M. Liu, L. Hu, B.J. Zheng, V.K. Poon, P. Huang, Y.F. Yuan, J.D. Huang, J. Yang, G.S. Tsao, and X.Y. Guan. 2012. Translationally controlled tumor protein induces mitotic defects and chromosome missegregation in hepatocellular carcinoma development. Hepatology (Baltimore, Md.). 55:491-505.
    Chapman, J.D., J.P. Gagne, G.G. Poirier, and D.R. Goodlett. 2013. Mapping PARP-1 auto-ADP-ribosylation sites by liquid chromatography-tandem mass spectrometry. Journal of proteome research. 12:1868-1880.
    Chen, L., L. Hu, T.H. Chan, G.S. Tsao, D. Xie, K.K. Huo, L. Fu, S. Ma, B.J. Zheng, and X.Y. Guan. 2009. Chromodomain helicase/adenosine triphosphatase DNA binding protein 1-like (CHD1l) gene suppresses the nucleus-to-mitochondria translocation of nur77 to sustain hepatocellular carcinoma cell survival. Hepatology (Baltimore, Md.). 50:122-129.
    Ciccia, A., and S.J. Elledge. 2010. The DNA damage response: making it safe to play with knives. Mol Cell. 40:179-204.
    Cimprich, K.A., and D. Cortez. 2008. ATR: an essential regulator of genome integrity. Nat Rev Mol Cell Biol. 9:616-627.
    D'Amours, D., S. Desnoyers, I. D'Silva, and G.G. Poirier. 1999. Poly(ADP-ribosyl)ation reactions in the regulation of nuclear functions. Biochem J. 342 ( Pt 2):249-268.
    Fan, J., P.F. Wilson, H.K. Wong, S.S. Urbin, L.H. Thompson, and D.M. Wilson, 3rd. 2007. XRCC1 down-regulation in human cells leads to DNA-damaging agent hypersensitivity, elevated sister chromatid exchange, and reduced survival of BRCA2 mutant cells. Environmental and molecular mutagenesis. 48:491-500.
    Farmer, H., N. McCabe, C.J. Lord, A.N. Tutt, D.A. Johnson, T.B. Richardson, M. Santarosa, K.J. Dillon, I. Hickson, C. Knights, N.M. Martin, S.P. Jackson, G.C. Smith, and A. Ashworth. 2005. Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy. Nature. 434:917-921.
    Gagne, J.P., J.M. Hunter, B. Labrecque, B. Chabot, and G.G. Poirier. 2003. A proteomic approach to the identification of heterogeneous nuclear ribonucleoproteins as a new family of poly(ADP-ribose)-binding proteins. Biochem J. 371:331-340.
    Gao, Y., E. Mutter-Rottmayer, A. Zlatanou, C. Vaziri, and Y. Yang. 2017. Mechanisms of Post-Replication DNA Repair. Genes (Basel). 8.
    Giannattasio, M., K. Zwicky, C. Follonier, M. Foiani, M. Lopes, and D. Branzei. 2014. Visualization of recombination-mediated damage bypass by template switching. Nature structural & molecular biology. 21:884-892.
    Gottschalk, A.J., G. Timinszky, S.E. Kong, J. Jin, Y. Cai, S.K. Swanson, M.P. Washburn, L. Florens, A.G. Ladurner, J.W. Conaway, and R.C. Conaway. 2009a. Poly(ADP-ribosyl)ation directs recruitment and activation of an ATP-dependent chromatin remodeler. Proc Natl Acad Sci U S A. 106:13770-13774.
    Gottschalk, A.J., G. Timinszky, S.E. Kong, J.J. Jin, Y. Cai, S.K. Swanson, M.P. Washburn, L. Florens, A.G. Ladurner, J.W. Conaway, and R.C. Conaway. 2009b. Poly(ADP-ribosyl)ation directs recruitment and activation of an ATP-dependent chromatin remodeler. Proceedings of the National Academy of Sciences of the United States of America. 106:13770-13774.
    Gottschalk, A.J., R.D. Trivedi, J.W. Conaway, and R.C. Conaway. 2012. Activation of the SNF2 family ATPase ALC1 by poly(ADP-ribose) in a stable ALC1.PARP1.nucleosome intermediate. The Journal of biological chemistry. 287:43527-43532.
    Harper, J.W., and S.J. Elledge. 2007. The DNA damage response: ten years after. Mol Cell. 28:739-745.
    Hassa, P.O., S.S. Haenni, M. Elser, and M.O. Hottiger. 2006. Nuclear ADP-ribosylation reactions in mammalian cells: where are we today and where are we going? Microbiology and molecular biology reviews : MMBR. 70:789-829.
    Helleday, T., E. Petermann, C. Lundin, B. Hodgson, and R.A. Sharma. 2008. DNA repair pathways as targets for cancer therapy. Nature reviews. Cancer. 8:193-204.
    Hilz, H. 1981. ADP-ribosylation of proteins--a multifunctional process. Hoppe-Seyler's Zeitschrift fur physiologische Chemie. 362:1415-1425.
    Hoege, C., B. Pfander, G.L. Moldovan, G. Pyrowolakis, and S. Jentsch. 2002. RAD6-dependent DNA repair is linked to modification of PCNA by ubiquitin and SUMO. Nature. 419:135-141.
    Hoeijmakers, J.H. 2009. DNA damage, aging, and cancer. N Engl J Med. 361:1475-1485.
    Hottiger, M.O., P.O. Hassa, B. Luscher, H. Schuler, and F. Koch-Nolte. 2010. Toward a unified nomenclature for mammalian ADP-ribosyltransferases. Trends in biochemical sciences. 35:208-219.
    Jones, R.M., and E. Petermann. 2012. Replication fork dynamics and the DNA damage response. Biochem J. 443:13-26.
    Jungmichel, S., F. Rosenthal, M. Altmeyer, J. Lukas, M.O. Hottiger, and M.L. Nielsen. 2013. Proteome-wide identification of poly(ADP-Ribosyl)ation targets in different genotoxic stress responses. Mol Cell. 52:272-285.
    Karras, G.I., G. Kustatscher, H.R. Buhecha, M.D. Allen, C. Pugieux, F. Sait, M. Bycroft, and A.G. Ladurner. 2005. The macro domain is an ADP-ribose binding module. Embo j. 24:1911-1920.
    Kim, M.Y., T. Zhang, and W.L. Kraus. 2005. Poly(ADP-ribosyl)ation by PARP-1: 'PAR-laying' NAD+ into a nuclear signal. Genes Dev. 19:1951-1967.
    Krijger, P.H., K.Y. Lee, N. Wit, P.C. van den Berk, X. Wu, H.P. Roest, A. Maas, H. Ding, J.H. Hoeijmakers, K. Myung, and H. Jacobs. 2011. HLTF and SHPRH are not essential for PCNA polyubiquitination, survival and somatic hypermutation: existence of an alternative E3 ligase. DNA Repair (Amst). 10:438-444.
    Langelier, M.F., J.L. Planck, S. Roy, and J.M. Pascal. 2012. Structural basis for DNA damage-dependent poly(ADP-ribosyl)ation by human PARP-1. Science. 336:728-732.
    Lee, D., J. An, Y.U. Park, H. Liaw, R. Woodgate, J.H. Park, and K. Myung. 2017. SHPRH regulates rRNA transcription by recognizing the histone code in an mTOR-dependent manner. Proc Natl Acad Sci U S A. 114:E3424-e3433.
    Leung, A.K. 2014. Poly(ADP-ribose): an organizer of cellular architecture. The Journal of cell biology. 205:613-619.
    Li, M., L.Y. Lu, C.Y. Yang, S. Wang, and X. Yu. 2013a. The FHA and BRCT domains recognize ADP-ribosylation during DNA damage response. Genes Dev. 27:1752-1768.
    Li, M., and X. Yu. 2013. Function of BRCA1 in the DNA damage response is mediated by ADP-ribosylation. Cancer cell. 23:693-704.
    Li, Y., L. Chen, T.H. Chan, M. Liu, K.L. Kong, J.L. Qiu, Y. Li, Y.F. Yuan, and X.Y. Guan. 2013b. SPOCK1 is regulated by CHD1L and blocks apoptosis and promotes HCC cell invasiveness and metastasis in mice. Gastroenterology. 144:179-191.e174.
    Luke-Glaser, S., B. Luke, S. Grossi, and A. Constantinou. 2010. FANCM regulates DNA chain elongation and is stabilized by S-phase checkpoint signalling. EMBO J. 29:795-805.
    Luo, X., and W.L. Kraus. 2012. On PAR with PARP: cellular stress signaling through poly(ADP-ribose) and PARP-1. Genes Dev. 26:417-432.
    Ma, N.F., L. Hu, J.M. Fung, D. Xie, B.J. Zheng, L. Chen, D.J. Tang, L. Fu, Z. Wu, M. Chen, Y. Fang, and X.Y. Guan. 2008. Isolation and characterization of a novel oncogene, amplified in liver cancer 1, within a commonly amplified region at 1q21 in hepatocellular carcinoma. Hepatology (Baltimore, Md.). 47:503-510.
    Malanga, M., A. Czubaty, A. Girstun, K. Staron, and F.R. Althaus. 2008. Poly(ADP-ribose) binds to the splicing factor ASF/SF2 and regulates its phosphorylation by DNA topoisomerase I. The Journal of biological chemistry. 283:19991-19998.
    Masuda, Y., M. Suzuki, H. Kawai, A. Hishiki, H. Hashimoto, C. Masutani, T. Hishida, F. Suzuki, and K. Kamiya. 2012. En bloc transfer of polyubiquitin chains to PCNA in vitro is mediated by two different human E2-E3 pairs. Nucleic Acids Res. 40:10394-10407.
    Minca, E.C., and D. Kowalski. 2010. Multiple Rad5 activities mediate sister chromatid recombination to bypass DNA damage at stalled replication forks. Mol Cell. 38:649-661.
    Motegi, A., H.J. Liaw, K.Y. Lee, H.P. Roest, A. Maas, X. Wu, H. Moinova, S.D. Markowitz, H. Ding, J.H.J. Hoeijmakers, and K. Myung. 2008. Polyubiquitination of proliferating cell nuclear antigen by HLTF and SHPRH prevents genomic instability from stalled replication forks. Proc Natl Acad Sci U S A. 105:12411-12416.
    Motegi, A., R. Sood, H. Moinova, S.D. Markowitz, P.P. Liu, and K. Myung. 2006. Human SHPRH suppresses genomic instability through proliferating cell nuclear antigen polyubiquitination. The Journal of cell biology. 175:703-708.
    Myung, K., and R.D. Kolodner. 2002. Suppression of genome instability by redundant S-phase checkpoint pathways in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A. 99:4500-4507.
    Nakamura, J., E. Mutlu, V. Sharma, L. Collins, W. Bodnar, R. Yu, Y. Lai, B. Moeller, K. Lu, and J. Swenberg. 2014. The endogenous exposome. DNA Repair (Amst). 19:3-13.
    Nieminuszczy, J., R.A. Schwab, and W. Niedzwiedz. 2016. The DNA fibre technique – tracking helicases at work. Methods. 108:92-98.
    Petrucco, S. 2003. Sensing DNA damage by PARP-like fingers. Nucleic Acids Res. 31:6689-6699.
    Petrucelli, N., M.B. Daly, and G.L. Feldman. 2010. Hereditary breast and ovarian cancer due to mutations in BRCA1 and BRCA2. Genetics in medicine : official journal of the American College of Medical Genetics. 12:245-259.
    Pines, A., M.G. Vrouwe, J.A. Marteijn, D. Typas, M.S. Luijsterburg, M. Cansoy, P. Hensbergen, A. Deelder, A. de Groot, S. Matsumoto, K. Sugasawa, N. Thoma, W. Vermeulen, H. Vrieling, and L. Mullenders. 2012. PARP1 promotes nucleotide excision repair through DDB2 stabilization and recruitment of ALC1. Journal of Cell Biology. 199:235-249.
    Prakash, L. 1981. Characterization of postreplication repair in Saccharomyces cerevisiae and effects of rad6, rad18, rev3 and rad52 mutations. Molecular & general genetics : MGG. 184:471-478.
    Prakash, S., R.E. Johnson, and L. Prakash. 2005. Eukaryotic translesion synthesis DNA polymerases: specificity of structure and function. Annu Rev Biochem. 74:317-353.
    Prakash, S., P. Sung, and L. Prakash. 1993. DNA repair genes and proteins of Saccharomyces cerevisiae. Annual review of genetics. 27:33-70.
    Sale, J.E. 2013. Translesion DNA synthesis and mutagenesis in eukaryotes. Cold Spring Harb Perspect Biol. 5:a012708.
    Sale, J.E., A.R. Lehmann, and R. Woodgate. 2012. Y-family DNA polymerases and their role in tolerance of cellular DNA damage. Nat Rev Mol Cell Biol. 13:141-152.
    Schreiber, V., F. Dantzer, J.C. Ame, and G. de Murcia. 2006. Poly(ADP-ribose): novel functions for an old molecule. Nat Rev Mol Cell Biol. 7:517-528.
    Scully, R., and D.M. Livingston. 2000. In search of the tumour-suppressor functions of BRCA1 and BRCA2. Nature. 408:429-432.
    Sellou, H., T. Lebeaupin, C. Chapuis, R. Smith, A. Hegele, H.R. Singh, M. Kozlowski, S. Bultmann, A.G. Ladurner, G. Timinszky, and S. Huet. 2016. The poly(ADP-ribose)-dependent chromatin remodeler Alc1 induces local chromatin relaxation upon DNA damage. Molecular Biology of the Cell. 27:3791-3799.
    Snider, A.C., D. Leong, Q.T. Wang, J. Wysocka, M.W. Yao, and M.P. Scott. 2013. The chromatin remodeling factor Chd1l is required in the preimplantation embryo. Biology open. 2:121-131.
    Stults, D.M., M.W. Killen, and A.J. Pierce. 2014. The sister chromatid exchange (SCE) assay. Methods in molecular biology (Clifton, N.J.). 1105:439-455.
    Su, W.P., S.H. Hsu, C.K. Wu, S.B. Chang, Y.J. Lin, W.B. Yang, J.J. Hung, W.T. Chiu, S.F. Tzeng, Y.L. Tseng, J.Y. Chang, W.C. Su, and H.J. Liaw. 2014. Chronic treatment with cisplatin induces replication-dependent sister chromatid recombination to confer cisplatin-resistant phenotype in nasopharyngeal carcinoma. Oncotarget. 5:6323-6337.
    Tsuji, Y., K. Watanabe, K. Araki, M. Shinohara, Y. Yamagata, T. Tsurimoto, F. Hanaoka, K. Yamamura, M. Yamaizumi, and S. Tateishi. 2008. Recognition of forked and single-stranded DNA structures by human RAD18 complexed with RAD6B protein triggers its recruitment to stalled replication forks. Genes Cells. 13:343-354.
    Tutt, A., D. Bertwistle, J. Valentine, A. Gabriel, S. Swift, G. Ross, C. Griffin, J. Thacker, and A. Ashworth. 2001. Mutation in Brca2 stimulates error-prone homology-directed repair of DNA double-strand breaks occurring between repeated sequences. Embo j. 20:4704-4716.
    Unk, I., I. Hajdu, A. Blastyak, and L. Haracska. 2010. Role of yeast Rad5 and its human orthologs, HLTF and SHPRH in DNA damage tolerance. DNA Repair (Amst). 9:257-267.
    Unk, I., I. Hajdu, K. Fatyol, J. Hurwitz, J.-H. Yoon, L. Prakash, S. Prakash, and L. Haracska. 2008. Human HLTF functions as a ubiquitin ligase for proliferating cell nuclear antigen polyubiquitination. Proceedings of the National Academy of Sciences of the United States of America. 105:3768-3773.
    Unk, I., I. Hajdu, K. Fatyol, B. Szakal, A. Blastyak, V. Bermudez, J. Hurwitz, L. Prakash, S. Prakash, and L. Haracska. 2006. Human SHPRH is a ubiquitin ligase for Mms2-Ubc13-dependent polyubiquitylation of proliferating cell nuclear antigen. Proceedings of the National Academy of Sciences of the United States of America. 103:18107-18112.
    Westermark, U.K., M. Reyngold, A.B. Olshen, R. Baer, M. Jasin, and M.E. Moynahan. 2003. BARD1 participates with BRCA1 in homology-directed repair of chromosome breaks. Molecular and cellular biology. 23:7926-7936.
    Wu, L., and I.D. Hickson. 2003. The Bloom's syndrome helicase suppresses crossing over during homologous recombination. Nature. 426:870-874.

    下載圖示 校內:2020-08-08公開
    校外:2020-08-08公開
    QR CODE