簡易檢索 / 詳目顯示

研究生: 廖國廷
Liao, Guo-Ting
論文名稱: 考慮可靠度下協同服務串聯系統最佳動態分配
Optimal dynamic allocation of collaborative servers in tandem systems with reliability considerations
指導教授: 莊雅棠
Chuang, Ya-Tang
學位類別: 碩士
Master
系所名稱: 管理學院 - 工業與資訊管理學系碩士在職專班
Department of Industrial and Information Management (on the job class)
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 43
中文關鍵詞: 生產規劃可靠度串聯系統動態規劃最佳化
外文關鍵詞: production schedule, reliability, tandem system, dynamic programming, optimization
相關次數: 點閱:160下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 生產線平衡,是製造業者所嚮往的生產狀態,但往往會因為製程或是增購的設備,導致前後站生產的串聯系統出現了缺料或是在製品過多的現象,而生產順序以及生產數量的取捨調度,考驗著企業的調度人員,在有限的資源中,藉由系統即時且準確的排出最適當的生產順序,為當今的主流,工作站裡可以根據機台性質分為專用設備以及彈性設備,其中專用設備僅能於當前工作站作業無跨製程的能力,而彈性設備則是能加工於不同的工作站別,可依據需求做調整,生產規劃中的協同服務為專用與彈性設備其性質能夠在同一個工件上加工,本研究將探討專用設備在考慮可靠度的狀態下,協同服務串聯系統在各狀態時將會如何調度現有彈性設備資源,得出各階段最佳決策以及該模式下的性質。

    本研究以庫存成本最小化為最佳化目標,將過往協同服務串聯系統之研究延伸,在原有二階段串聯系統中,考慮了專用設備的可靠度,因為設備失效的頻率以及維護所花費的成本皆會影響生產節奏,增設了可靠度的考量後將使得生產的狀態更加貼近現實面,接著本研究將建立模型中相關參數,建立馬可夫決策模型,並依據目前工作站的工件數量,彈性設備的資源調度將做為系統決策,比較出調度後令成本最小化的決策,利用動態規劃的演算法計算出多期數下之結論,並最終給予使用者回饋;本研究將會根據這個模型,同時考慮專用設備的停機策略以及不停機策略,對原有文獻提及的性質定理做比較,並且我們從中得出了某些情況下,因受到設備可靠度的影響,隨著工作站的工件數量越少,最佳決策反而投入更多的資源於該工作站,這部分結論與過往文獻有所差異,並且這也與現實認知中有所差異,本研究將說明相關參數細節以及建立之技巧。

    It is common to have tandem systems used in production configuration in the manufacturing industry. According to the nature of the machine, the station can be separated into dedicated equipment and flexible equipment. The dedicated equipment can only work in their corresponding station, and the flexible equipment can be flexibly dispatched to different stations. Collaborative services are dedicated and flexible equipment that can work together on the same Work In Process (WIP). Therefore, in the case of limited resources, in order to obtain the optimal decision-making and mode properties at each stage, this study will discuss how the dedicated equipment schedules the existing flexible device resources.
    This study takes the minimization of inventory cost as the optimization goal. It extends the previous research on collaborative service tandem system and adds the conditions of station dedicated equipment reliability. Besides, it considers the idling policies and non-idling policies of dedicated equipment, and establishes a Markov decision model based on this situation. The resource allocation of flexible equipment is used as a decision variable, and the expected cost equation is constructed. At last, dynamic programming is used to find the optimal policy at each state. From some cases, due to the influence of dedicated equipment reliability, as the number of WIP in the station is less, the optimal decision is invested more resources in the station. This part of the conclusion is different from the past literature. And this is also different from real cognition. This study will illustrate the details of related parameters and the techniques for establishing.

    摘要 I Abstract II 誌謝 VI 目錄 VII 表目錄 IX 圖目錄 IX 第一章 緒論 1 1.1 研究背景與動機 1 1.2 研究目的 2 1.3 研究範圍與限制 3 1.4 研究流程 4 第二章 文獻探討 5 2.1 生產規劃模式 5 2.2 二階段串聯系統 6 2.3 可靠度 7 2.4 動態規劃 8 2.5 文獻小結 9 第三章 研究方法 10 3.1 問題定義與基本假設 10 3.2 問題模式之參數與變數 12 3.3 問題架構與模式 13 3.3.1 階段狀態變數樣本空間 13 3.3.2 階段決策樣本空間 13 3.3.3 階段轉移機率 14 3.3.4 期望成本方程式 16 3.3.5 停機策略 16 3.4 求解數學模式之演算法 18 3.4.1 不停機策略流程 18 3.4.2 停機策略流程 19 第四章 實證研究與數值分析 22 4.1 執行環境設置與驗證參數 22 4.2 不停機策略數值分析 23 4.2.1 不停機策略定理說明 24 4.2.2 不停機策略定理驗證 25 4.3 停機策略數值分析 31 4.3.1 停機策略定理說明 32 4.3.2 停機策略定理驗證 32 第五章 結論與建議 38 5.1 結論 38 5.2 未來研究方向 40 參考文獻 41

    Ahn, H. S., Duenyas, I., & Lewis, M. E. (2002). Optimal control of a two-stage tandem queuing system with flexible servers. Probability in the Engineering and Informational Sciences, 16(4), 453-469.
    Balasubramanian, J., & Grossmann, I. E. (2004). Approximation to Multistage Stochastic Optimization in Multiperiod Batch Plant Scheduling under Demand Uncertainty. Industrial & Engineering Chemistry Research, 43(14), 3695-3713. doi: 10.1021/ie030308+
    Bensmaine, A., Dahane, M., & Benyoucef, L. (2013). A non-dominated sorting genetic algorithm based approach for optimal machines selection in reconfigurable manufacturing environment. Computers & Industrial Engineering, 66(3), 519-524.
    Cao, J. (1994). Reliability analysis of M/G/1 queueing system with repairable service station of reliability series structure. Microelectronics Reliability, 34(4), 721-725.
    Chaleshigar Kordasiabi, M., Gholizadeh, H., Fazlollahtabar, H., & Javadian, N. (2020). Analysis of cost model with queuing system under uncertainty. Journal of Industrial and Production Engineering, 37(6), 292-304.
    Choudhury, G., & Tadj, L. (2009). An M/G/1 queue with two phases of service subject to the server breakdown and delayed repair. Applied Mathematical Modelling, 33(6), 2699-2709.
    Dolgui, A., & Louly, M. (2002). A model for supply planning under lead time uncertainty. International Journal of Production Economics, 78, 145-152.
    Dolgui, A., & Prodhon, C. (2007). Supply planning under uncertainties in MRP environments: A state of the art. Annual Reviews in Control, 31(2), 269-279.
    Dou, J., Dai, X., & Meng, Z. (2009). Optimisation for multi-part flow-line configuration of reconfigurable manufacturing system using GA. International Journal of Production Research, 48(14), 4071-4100.
    Farrar, T. M. (1993). Optimal use of an extra server in a two station tandem queueing network. IEEE Transactions on Automatic Control, 38(8), 1296-1299.
    Fazlollahtabar, H., & Gholizadeh, H. (2019). Economic analysis of the M/M/1/N queuing system cost model in a vague environment. Internationa Journal of Fuzzy Logic and Intelligent Systems, 19(3), 192-203.
    Gerchak, Y., & Grosfeld-Nir, A. (1998). Multiple lot-sizing, and value of probabilistic information, in production to order of an uncertain size. International Journal of Production Economics, 56-57, 191-197.
    Hajek, B. (1984). Optimal control of two interacting service stations. IEEE Transactions on Automatic Control, 29(6), 491-499.
    Iwata, Y., Taji, K., & Tamura, H. (2010). Multi-objective capacity planning for agile semiconductor manufacturing. Production Planning & Control, 14(3), 244-254.
    Lee, Y. Y., Chen, C. T., & Wu, C. (2005). Reaction chain of process queue time quality control. IEEE International Symposium on Semiconductor Manufacturing, 47-50.
    Lippman, S. A. (1975). Applying a new device in the optimization of exponential queuing systems. Operations Research, 23(4), 687-710.
    Narongwanich, W., Duenyas, I., & Birge, J. R. (2002). Optimal portfolio of reconfigurable and dedicated capacity under uncertainty. Preprint. University of Michigan.
    Özdamar, L., & Yazgaç, T. (1997). Capacity driven due date settings in make-to-order production systems. International Journal of Production Economics, 49(1), 29-44.
    Pandelis, D. G. (2006). Optimal use of excess capacity in two interconnected queues. Mathematical Methods of Operations Research, 65(1), 179-192.
    Pandelis, D. G. (2007). Optimal control of flexible servers in two tandem queues with operating costs. Probability in the Engineering and Informational Sciences, 22(1), 107-131.
    Pandelis, D. G. (2014). Optimal control of noncollaborative servers in two-stage tandem queueing systems. Naval Research Logistics (NRL), 61(6), 435-446.
    Papachristos, I. (2019). Optimization of flexible production and supply systems.
    Papachristos, I., & Pandelis, D. G. (2019). Optimal dynamic allocation of collaborative servers in two station tandem systems. IEEE Transactions on Automatic Control, 64(4), 1640-1647.
    Rajadurai, P., Saravanarajan, M. C., & Chandrasekaran, V. M. (2018). A study on M/G/1 feedback retrial queue with subject to server breakdown and repair under multiple working vacation policy. Alexandria Engineering Journal, 57(2), 947-962.
    Rosberg, Z., Varaiya, P., & Walrand, J. (1982). Optimal control of service in tandem queues. IEEE Transactions on Automatic Control, 27(3), 600-610.
    Rose, O. (1999). Conload-a new lot release rule for semiconductor wafer fabs. Winter Simulation Conference, 1, 850-855 vol.851.
    Sahin, F., Narayanan, A., & Robinson, E. (2013). Rolling horizon planning in supply chains: Review, implications and directions for future research. International Journal of Production Research, 51. doi: 10.1080/00207543.2013.775523
    Saxena, L. K., & Jain, P. K. (2011). A model and optimisation approach for reconfigurable manufacturing system configuration design. International Journal of Production Research, 50(12), 3359-3381.
    Spicer, J. P. (2002). A design methodology for scalable machining systems. University of Michigan College of Engineering Graduate Professional Programs.
    Wang, J. (2004). An M/G/1 queue with second optional service and server breakdowns. Computers & Mathematics with Applications, 47(10), 1713-1723.
    Wang, J., Cao, J., & Li, Q. (2001). Reliability analysis of the retrial queue with server breakdowns and repairs. Queueing Systems, 38(4), 363-380.
    Wu, C. H., Chien, W. C., Chuang, Y. T., & Cheng, Y. C. (2016). Multiple product admission control in semiconductor manufacturing systems with process queue time (PQT) constraints. Computers & Industrial Engineering, 99, 347-363.
    Wu, C. H., Down, D. G., & Lewis, M. E. (2008). Heuristics for allocation of reconfigurable resources in a serial line with reliability considerations. IIE Transactions, 40(6), 595-611.
    Wu, C. H., Lewis, M. E., & Veatch, M. (2006). Dynamic allocation of reconfigurable resources in a two-stage tandem queueing system with reliability considerations. IEEE Transactions on Automatic Control, 51(2), 309-314.
    林俊良. (2004). 應用馬可夫決策過程探討當機機台最佳修復策略. 國立雲林科技大學.
    黃昭凱. (2009). 考慮可靠度下整合生產與預防維護保養排程之研究. 國立雲林科技大學.

    無法下載圖示 校內:2027-06-16公開
    校外:2027-06-16公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE