簡易檢索 / 詳目顯示

研究生: 阮氏川
Xuyen, Nguyen Thi
論文名稱: 以微波水熱法製造1T/2H二硫化鉬奈米花及其具超高能量密度之聚吡咯複合材料
Microwave-assisted hydrothermal synthesized 1T/2H hybridized MoS2 nanoflowers and its polypyrrole nanocomposites exhibiting extremely high energy density
指導教授: 丁志明
Ting, Jyh-Ming
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 英文
論文頁數: 81
外文關鍵詞: 1T-2H MoS2 nanoflowers, microwave-assisted hydrothermal, MoS2/PPy nanocomposites
相關次數: 點閱:92下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • Two–dimensional (2D) transition metal dichalcogenide materials attracts a huge of attention for application in energy storage devices due to its unique nanostructure and electronic properties. In this study, molybdenum disulfide (MoS2) nanoflowers consisting of 1T-2H hybridized phases have been synthesized using a microwave-assisted hydrothermal method under various conditions. The obtained materials were characterized for the material properties and then made into electrodes for use in supercapacitor. The resulting supercapacitor was evaluated using cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and a charge-discharge technique. The CV measurement shows that as-synthesized MoS2 electrode delivers a capacitance as high as 262 Fg-1 at a scan rate of 5 mV/s in KCl aqueous electrolyte. MoS2 electrode also exhibits excellent electrochemical performance of high conductivity based on the EIS analysis. More importantly, the obtained MoS2 nanoflowers contain the desirable metallic 1T phase. We have therefore proposed a mechanism to explain the formation of the 1T phase. Further enhancement of the electrochemical performance has been achieved through the growth of polypyrrole (PPy) on the MoS2 nanoflowers by in situ polymerization of pyrrole monomers. The PPy provides addition capacitance and conductivity to the MoS2 while the MoS2 prevents PPy from degradation, thus forming MoS2/PPy nanocomposites that exhibit extremely high energy densities up to 126 W h kg-1 and excellent cycling stability and making themselves promising candidate electrodes for use in supercapacitors. The effects of materials characteristics on the electrochemical performance is also addressed.

    Contents Abstract i Acknowledgement iii List of tables vi List of figures vii Chapter 1 1 Introduction 1 1.1 Preface 1 1.2 Objective 5 Chapter 2 6 Theoretical Review 6 2.1 Principle of supercapacitor 6 2.1.1 The energy storage mechanism of EDLCs 6 2.1.2 The energy storage mechanism of pseudocapacitors 11 2.2 Electrode materials 11 2.2.1 Carbon material 12 2.2.3 Conducting polymer 17 2.2.4 MoS2 as supercapacitor electrode materials 18 2.2.5 MoS2/PPy nanocomposite as electrode material 23 2.2.6 Electrolyte 24 Chapter 3 27 Experimental 27 3.1 Materials 27 3.2 Sample Preparation 27 3.2.1 Synthesis of MoS2 27 3.2.2 Preparation of MoS2/PPy nanocomposites 28 3.3 Characterization 31 3.3.1 X-Ray Diffraction (XRD) 31 3.3.2 Raman Spectroscopy 31 3.3.3 Scanning Electron Microscopy (SEM) 31 3.3.4 Transmission Electron Microscopy (TEM) 31 3.3.5 X-Ray Photoemission Spectroscopy (XPS) 32 3.2.2 Electrochemical measurement 32 Results and discussion 35 4.1 MoS2 nanoflowers 35 4.1.1 Morphology and structure characterization 35 4.1.2 Electrochemical characterization 49 4.2 MoS2/PPy nanocomposites 61 4.2.1 Morphology and structure characterization 61 4.2.2 Electrochemical characterization 64 4.3 Formation Mechanism of Hybridized 1T/2H MoS2 nanoflowers 73 Chapter 5 76 Conclusion 76 Reference 77

    Reference
    1. Xiong, G., A. Kundu, and T.S. Fisher, Thermal effects in supercapacitors. 2015: Springer.
    2. Simon, P., Y. Gogotsi, and B. Dunn, Where do batteries end and supercapacitors begin? Science, 2014. 343(6176): p. 1210-1211.
    3. Geng, X., et al., Pure and stable metallic phase molybdenum disulfide nanosheets for hydrogen evolution reaction. Nature communications, 2016. 7.
    4. Jiang, L., et al., Optimizing Hybridization of 1T and 2H Phases in MoS2 Monolayers to Improve Capacitances of Supercapacitors. Materials Research Letters, 2015. 3(4): p. 177-183.
    5. Qi, Y., et al., CO2-Induced Phase Engineering: Protocol for Enhanced Photoelectrocatalytic Performance of 2D MoS2 Nanosheets. ACS nano, 2016. 10(2): p. 2903-2909.
    6. Acerce, M., D. Voiry, and M. Chhowalla, Metallic 1T phase MoS2 nanosheets as supercapacitor electrode materials. Nature nanotechnology, 2015. 10(4): p. 313-318.
    7. Huang, K.-J., et al., Hydrothermal synthesis of molybdenum disulfide nanosheets as supercapacitors electrode material. Electrochimica Acta, 2014. 132: p. 397-403.
    8. Wang, L., et al., Hierarchical hollow MoS 2 nanospheres with enhanced electrochemical properties used as an electrode in supercapacitor. Electrochimica Acta, 2015. 186: p. 391-396.
    9. Soon, J.M. and K.P. Loh, Electrochemical double-layer capacitance of MoS2 nanowall films. Electrochemical and Solid-State Letters, 2007. 10(11): p. A250-A254.
    10. Xie, J., et al., Defect‐rich MoS2 ultrathin nanosheets with additional active edge sites for enhanced electrocatalytic hydrogen evolution. Advanced Materials, 2013. 25(40): p. 5807-5813.
    11. Zak, A., et al., Growth mechanism of MoS2 fullerene-like nanoparticles by gas-phase synthesis. Journal of the American Chemical Society, 2000. 122(45): p. 11108-11116.
    12. Oztas, T., et al., Synthesis of Colloidal 2D/3D MoS2 Nanostructures by Pulsed Laser Ablation in an Organic Liquid Environment. The Journal of Physical Chemistry C, 2014. 118(51): p. 30120-30126.
    13. Lee, Y.H., et al., Synthesis of Large‐Area MoS2 Atomic Layers with Chemical Vapor Deposition. Advanced Materials, 2012. 24(17): p. 2320-2325.
    14. Tao, J., et al., Growth of wafer-scale MoS 2 monolayer by magnetron sputtering. Nanoscale, 2015. 7(6): p. 2497-2503.
    15. Coleman, J.N., et al., Two-dimensional nanosheets produced by liquid exfoliation of layered materials. Science, 2011. 331(6017): p. 568-571.
    16. Xiong, F., et al., Li intercalation in MoS2: In situ observation of its dynamics and tuning optical and electrical properties. Nano letters, 2015. 15(10): p. 6777-6784.
    17. Zhu, Y.-J. and F. Chen, Microwave-assisted preparation of inorganic nanostructures in liquid phase. Chemical reviews, 2014. 114(12): p. 6462-6555.
    18. Wang, G., L. Zhang, and J. Zhang, A review of electrode materials for electrochemical supercapacitors. Chemical Society Reviews, 2012. 41(2): p. 797-828.
    19. An, H., et al., Polypyrrole/carbon aerogel composite materials for supercapacitor. Journal of Power Sources, 2010. 195(19): p. 6964-6969.
    20. Sharma, R., A. Rastogi, and S. Desu, Manganese oxide embedded polypyrrole nanocomposites for electrochemical supercapacitor. Electrochimica Acta, 2008. 53(26): p. 7690-7695.
    21. Simon, P. and Y. Gogotsi, Materials for electrochemical capacitors. Nature materials, 2008. 7(11): p. 845-854.
    22. Zhang, L.L. and X. Zhao, Carbon-based materials as supercapacitor electrodes. Chemical Society Reviews, 2009. 38(9): p. 2520-2531.
    23. Conway, B.E., Electrochemical supercapacitors: scientific fundamentals and technological applications. 2013: Springer Science & Business Media.
    24. Huang, J., B.G. Sumpter, and V. Meunier, Theoretical model for nanoporous carbon supercapacitors. Angewandte Chemie International Edition, 2008. 47(3): p. 520-524.
    25. Huang, J., B.G. Sumpter, and V. Meunier, A universal model for nanoporous carbon supercapacitors applicable to diverse pore regimes, carbon materials, and electrolytes. Chemistry–A European Journal, 2008. 14(22): p. 6614-6626.
    26. Zhong, C., et al., A review of electrolyte materials and compositions for electrochemical supercapacitors. Chemical Society Reviews, 2015. 44(21): p. 7484-7539.
    27. Hu, C.-C., et al., Design and tailoring of the nanotubular arrayed architecture of hydrous RuO2 for next generation supercapacitors. Nano letters, 2006. 6(12): p. 2690-2695.
    28. Zhang, H., et al., Growth of manganese oxide nanoflowers on vertically-aligned carbon nanotube arrays for high-rate electrochemical capacitive energy storage. Nano letters, 2008. 8(9): p. 2664-2668.
    29. Choi, D., G.E. Blomgren, and P.N. Kumta, Fast and reversible surface redox reaction in nanocrystalline vanadium nitride supercapacitors. Advanced Materials, 2006. 18(9): p. 1178-1182.
    30. Fan, L.Z., et al., High electroactivity of polyaniline in supercapacitors by using a hierarchically porous carbon monolith as a support. Advanced Functional Materials, 2007. 17(16): p. 3083-3087.
    31. Wang, K., et al., Constructing a “Pizza‐Like” MoS2/Polypyrrole/Polyaniline Ternary Architecture with High Energy Density and Superior Cycling Stability for Supercapacitors. Advanced Materials Interfaces, 2016. 3(19).
    32. Seredych, M., et al., Surface functional groups of carbons and the effects of their chemical character, density and accessibility to ions on electrochemical performance. Carbon, 2008. 46(11): p. 1475-1488.
    33. Wen, T.C. and C.C. Hu, Hydrogen and Oxygen Evolutions on Ru‐Ir Binary Oxides. Journal of the Electrochemical Society, 1992. 139(8): p. 2158-2163.
    34. Yu, Z., et al., Supercapacitor electrode materials: nanostructures from 0 to 3 dimensions. Energy & Environmental Science, 2015. 8(3): p. 702-730.
    35. Simon, P. and A. Burke, Nanostructured carbons: double-layer capacitance and more. The electrochemical society interface, 2008. 17(1): p. 38.
    36. Fernández, J., et al., Performance of mesoporous carbons derived from poly (vinyl alcohol) in electrochemical capacitors. Journal of Power Sources, 2008. 175(1): p. 675-679.
    37. Jurewicz, K., et al., Capacitance properties of ordered porous carbon materials prepared by a templating procedure. Journal of Physics and Chemistry of Solids, 2004. 65(2): p. 287-293.
    38. Talapatra, S., et al., Direct growth of aligned carbon nanotubes on bulk metals. Nature nanotechnology, 2006. 1(2): p. 112-116.
    39. Pandolfo, A. and A. Hollenkamp, Carbon properties and their role in supercapacitors. Journal of power sources, 2006. 157(1): p. 11-27.
    40. Bordjiba, T., M. Mohamedi, and L.H. Dao, New Class of Carbon‐Nanotube Aerogel Electrodes for Electrochemical Power Sources. Advanced materials, 2008. 20(4): p. 815-819.
    41. González, A., et al., Review on supercapacitors: Technologies and materials. Renewable and Sustainable Energy Reviews, 2016. 58: p. 1189-1206.
    42. Stoller, M.D., et al., Graphene-based ultracapacitors. Nano letters, 2008. 8(10): p. 3498-3502.
    43. Wu, Z.-S., et al., Graphene/metal oxide composite electrode materials for energy storage. Nano Energy, 2012. 1(1): p. 107-131.
    44. Wu, N.-L., Nanocrystalline oxide supercapacitors. Materials Chemistry and Physics, 2002. 75(1): p. 6-11.
    45. Brousse, T., et al., Crystalline MnO2 as possible alternatives to amorphous compounds in electrochemical supercapacitors. Journal of The Electrochemical Society, 2006. 153(12): p. A2171-A2180.
    46. Gao, Z.-H., et al., Spherical porous VN and NiO x as electrode materials for asymmetric supercapacitor. Electrochimica Acta, 2013. 87: p. 375-380.
    47. Lang, X., et al., Nanoporous metal/oxide hybrid electrodes for electrochemical supercapacitors. Nature Nanotechnology, 2011. 6(4): p. 232-236.
    48. Hu, C.-C., W.-C. Chen, and K.-H. Chang, How to achieve maximum utilization of hydrous ruthenium oxide for supercapacitors. Journal of the Electrochemical Society, 2004. 151(2): p. A281-A290.
    49. Pang, S.C., M.A. Anderson, and T.W. Chapman, Novel electrode materials for thin‐film ultracapacitors: comparison of electrochemical properties of sol‐gel‐derived and electrodeposited manganese dioxide. Journal of the Electrochemical Society, 2000. 147(2): p. 444-450.
    50. Toupin, M., T. Brousse, and D. Bélanger, Influence of microstucture on the charge storage properties of chemically synthesized manganese dioxide. Chemistry of Materials, 2002. 14(9): p. 3946-3952.
    51. Chang, J.-K., M.-T. Lee, and W.-T. Tsai, In situ Mn K-edge X-ray absorption spectroscopic studies of anodically deposited manganese oxide with relevance to supercapacitor applications. Journal of Power Sources, 2007. 166(2): p. 590-594.
    52. Ghodbane, O., J.-L. Pascal, and F. Favier, Microstructural effects on charge-storage properties in MnO2-based electrochemical supercapacitors. ACS applied materials & interfaces, 2009. 1(5): p. 1130-1139.
    53. Subramanian, V., et al., Hydrothermal synthesis and pseudocapacitance properties of MnO2 nanostructures. The Journal of Physical Chemistry B, 2005. 109(43): p. 20207-20214.
    54. Rudge, A., et al., Conducting polymers as active materials in electrochemical capacitors. Journal of Power Sources, 1994. 47(1-2): p. 89-107.
    55. Laforgue, A., P. Simon, and J.-F. Fauvarque, Chemical synthesis and characterization of fluorinated polyphenylthiophenes: application to energy storage. Synthetic metals, 2001. 123(2): p. 311-319.
    56. Naoi, K., S. Suematsu, and A. Manago, Electrochemistry of Poly (1, 5‐diaminoanthraquinone) and Its Application in Electrochemical Capacitor Materials. Journal of The Electrochemical Society, 2000. 147(2): p. 420-426.
    57. Kötz, R. and M. Carlen, Principles and applications of electrochemical capacitors. Electrochimica acta, 2000. 45(15): p. 2483-2498.
    58. Ren, L., et al., Three-Dimensional Tubular MoS2/PANI Hybrid Electrode for High Rate Performance Supercapacitor. ACS applied materials & interfaces, 2015. 7(51): p. 28294-28302.
    59. Aphale, A., et al., Hybrid electrodes by in-situ integration of graphene and carbon-nanotubes in polypyrrole for supercapacitors. Scientific reports, 2015. 5.
    60. Chia, X., et al., Electrochemistry of nanostructured layered transition-metal dichalcogenides. Chemical reviews, 2015. 115(21): p. 11941-11966.
    61. Ma, G., et al., In situ intercalative polymerization of pyrrole in graphene analogue of MoS 2 as advanced electrode material in supercapacitor. Journal of Power Sources, 2013. 229: p. 72-78.
    62. Tang, H., et al., Growth of Polypyrrole Ultrathin Films on MoS2 Monolayers as High‐Performance Supercapacitor Electrodes. Advanced Materials, 2015. 27(6): p. 1117-1123.
    63. Bichat, M., E. Raymundo-Piñero, and F. Béguin, High voltage supercapacitor built with seaweed carbons in neutral aqueous electrolyte. Carbon, 2010. 48(15): p. 4351-4361.
    64. Hall, P.J., et al., Energy storage in electrochemical capacitors: designing functional materials to improve performance. Energy & Environmental Science, 2010. 3(9): p. 1238-1251.
    65. Liang, Y., et al., An advanced carbonaceous porous network for high-performance organic electrolyte supercapacitors. Journal of Materials Chemistry A, 2013. 1(24): p. 7000-7005.
    66. Liu, C., et al., Graphene-based supercapacitor with an ultrahigh energy density. Nano letters, 2010. 10(12): p. 4863-4868.
    67. Yu, Y., et al., Controlled scalable synthesis of uniform, high-quality monolayer and few-layer MoS2 films. Scientific reports, 2013. 3.
    68. Sandoval, S.J., et al., Raman study and lattice dynamics of single molecular layers of MoS 2. Physical Review B, 1991. 44(8): p. 3955.
    69. Calandra, M., Chemically exfoliated single-layer MoS 2: Stability, lattice dynamics, and catalytic adsorption from first principles. Physical Review B, 2013. 88(24): p. 245428.
    70. Wang, F., et al., Ammonia intercalated flower-like MoS2 nanosheet film as electrocatalyst for high efficient and stable hydrogen evolution. Scientific Reports, 2016. 6.
    71. Wu, J., et al., Exfoliated 2D Transition Metal Disulfides for Enhanced Electrocatalysis of Oxygen Evolution Reaction in Acidic Medium. Advanced Materials Interfaces, 2016.
    72. Shi, S., et al., Enhanced hydrogen evolution catalysis in MoS 2 nanosheets by incorporation of a metal phase. Journal of Materials Chemistry A, 2015. 3(48): p. 24414-24421.
    73. Cai, L., et al., Vacancy-induced ferromagnetism of MoS2 nanosheets. Journal of the American Chemical Society, 2015. 137(7): p. 2622-2627.
    74. Wang, H., et al., Electrochemical tuning of vertically aligned MoS2 nanofilms and its application in improving hydrogen evolution reaction. Proceedings of the National Academy of Sciences, 2013. 110(49): p. 19701-19706.
    75. Wang, H., et al., Electrochemical tuning of MoS2 nanoparticles on three-dimensional substrate for efficient hydrogen evolution. ACS nano, 2014. 8(5): p. 4940-4947.
    76. Choi, J.-G. and L. Thompson, XPS study of as-prepared and reduced molybdenum oxides. Applied Surface Science, 1996. 93(2): p. 143-149.
    77. Feng, G., et al., Synthesis of flower-like MoS2 nanosheets microspheres by hydrothermal method. Journal of Materials Science: Materials in Electronics, 2015. 26(10): p. 8160-8166.
    78. Wu, Z.C., et al., Fabrication of defect-rich MoS2 ultrathin nanosheets for application in lithium-ion batteries and supercapacitors. Journal of Materials Chemistry A, 2015. 3(38): p. 19445-19454.
    79. Li, M., Z. Wei, and L. Jiang, Polypyrrole nanofiber arrays synthesized by a biphasic electrochemical strategy. Journal of Materials Chemistry, 2008. 18(19): p. 2276-2280.
    80. Kumar, A., et al., Impact of p‐toluenesulfonate on polypyrrole–cobalt catalyst for oxygen reduction reaction. Journal of Applied Polymer Science, 2013. 130(4): p. 2645-2651.
    81. Ye, S., et al., Surface‐enhanced Raman scattering study of Ag@ PPy nanoparticles. Journal of Raman Spectroscopy, 2010. 41(10): p. 1119-1123.
    82. Vigmond, S.J., V. Ghaemmaghami, and M. Thompson, Raman and resonance-Raman spectra of polypyrrole with application to sensor-gas probe interactions. Canadian journal of chemistry, 1995. 73(10): p. 1711-1718.
    83. Abdullah, H.S., Electrochemical polymerization and Raman study of polypyrrole and polyaniline thin films. International Journal of Physical Sciences, 2012. 7(38): p. 5468-5476.

    下載圖示 校內:2022-01-30公開
    校外:2022-01-30公開
    QR CODE