簡易檢索 / 詳目顯示

研究生: 李坤敏
Lee, Kuen-Min
論文名稱: 用戶端設備廣域網路管理協定之系統效能優化
Toward Optimizing System Capabilities in a CWMP Network
指導教授: 鄧維光
TENG, WEI-GUANG
共同指導教授: 侯廷偉
HOU, TING-WEI
學位類別: 博士
Doctor
系所名稱: 工學院 - 工程科學系
Department of Engineering Science
論文出版年: 2016
畢業學年度: 104
語文別: 英文
論文頁數: 89
中文關鍵詞: 用戶端設備廣域網路管理協議技術報告TR-069重新排程分群預測
外文關鍵詞: CWMP, TR-069, rescheduling, grouping, prediction
相關次數: 點閱:144下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 用戶端設備廣域網路管理協議(CWMP)因具有自動配置與管理之設計,目前已廣泛地被諸多服務供應商及營運商採用。然而,此協議之系統效能會被兩項因素所限制:先到先服務(FCFS)實作方式,及用戶端設備(CPE)與自動配置伺服器(ACS)之間的主從式架構。有鑑於此,我們採用動態重新排程機制來克服此實作方式之限制;具體而言,我們提出一個轉換函數來估算單一任務的預期耗費,以動態地將各個待處理任務加以重新排序,此函數會依據每次會談所需之預估處理時間、會談處理剩餘時間、及每次會談等待時間等。其次,本研究亦提出以次級自動配置伺服器(sub-ACS)與動態分群機制來擴增此協議之管理能力。藉由重新分群與包裝同一種類之用戶端設備的請求與回應封包,單一伺服器同時管理之設備總數可大幅提升。另一方面,由於此管理協議被設計用以管理百萬數量等級之設備,單一伺服器可能會因為同時湧入了大量設備之請求封包,造成系統效能降低,因此,負載平衡技術常被搭配應用於此協議之管理系統。另因在此管理協議中,所有設備的參數與屬性皆為已知,靜態分配請求封包的負載管理方式便可勝任,但預防由於軟體錯誤或不正確的管理機制所造成之錯誤事件,以及避免請求封包的重新分派,反而成為值得深入研究的課題。有鑑於此,本研究提出一種自我學習預測器(SLP),並結合粘性會談機制,用以預測這些錯誤事件。由實驗結果得知,系統整體資源利用率與產出效能亦可被大幅提升。此外,本論文所提出之相關改善機制,透過了一連串模擬實驗來加以驗證其效能,由實驗結果得知,本論文所提出之相關機制可有效地優化應用用戶端設備廣域網路管理協議之網路系統效能。

    Enhanced with the auto-configuration and management features, CPE (customer premises equipment) WAN (wide area network) management protocol (CWMP) has now become widely used by service providers and operators. However, the system performance of CWMP is limited by the first-come, first-served (FCFS) implementation and the client/server management architecture between the CPEs and auto configuration servers (ACSs). Therefore, a dynamic rescheduling scheme is adopted to overcome the limitation of the FCFS implementation. Specifically, a cost transfer function that considers the estimated processing time, the remaining lifetime, and the waiting time of each session, is utilized to provide a proper ranking cost for the rescheduling scheme. In addition, this research creates a new design by combining a sub-ACS concept with a dynamic client grouping to extend the management capacity of CWMP. By leveraging regrouping and repackaging requests/responses of the same CPE type, the total number of CPEs that an ACS can manage simultaneously is greatly increased. On the other hand, as CWMP is designed to manage a huge number of devices, a single server may be degraded by a large number of simultaneous requests issued by clients. Hence, load balancing (LB) mechanisms are usually applied in CWMP-based management systems. The assignment of static LB policies adopted in CWMP-based management systems is straightforward and efficient because the parameters and attributes are predefined. Thus, the main tasks of such management systems in large-scale environments are not handling and distributing workloads; rather, the major functions are predicting unexpected crash events and preventing reassignment of LB policies. Consequently, a self-learning predictor (SLP) combined with a sticky session is proposed to predict unexpected crash events. The experimental results show that the system performance in terms of resources utilization and throughput can also be significantly improved. Furthermore, a set of simulation experiments were conducted to verify the effectiveness of all proposed approaches in this dissertation. From the experimental studies, the system capabilities in a CWMP network are optimized with our proposed scheme.

    Chapter 1 Introduction 1 1.1 Motivation 2 1.2 Approach 4 1.3 Contribution 6 1.4 Dissertation Overview 7 Chapter 2 Background and Related Works 9 2.1 CWMP Overview 9 2.1.1 Introduction of CWMP 9 2.1.2 Protocol Components and Data Models 10 2.1.3 Session Transaction Flows 11 2.2 Related Enhancements for CWMP 14 2.3 Related Works for CWMP in a Large-scale Environment 16 Chapter 3 ACS Throughput Enhancements Based on Rescheduling 21 3.1 System Architecture 22 3.2 Primary Workflow 25 3.3 Cost Transfer Function for Dynamic Weightings 26 3.4 Experimental Results and Analysis 30 3.4.1 Simulation Environments and Parameters 30 3.4.2 Results and Discussion 31 3.5 Summary 34 Chapter 4 ACS Capacity Extensions with Client Grouping & Sub-ACS 35 4.1 System Architecture 36 4.2 Primary Workflow 38 4.3 Sub-ACS RPC Methods 39 4.4 Experimental Results and Analysis 43 4.4.1 Simulation Environments and Parameters 44 4.4.2 Results and Discussion 45 4.5 Summary 49 Chapter 5 CWMP Performance Improvements by Self-learning Predictor 51 5.1 System Architecture 53 5.2 Primary Workflow 54 5.3 Implementation of CWMP with Self-learning Predictor 58 5.4 Experimental Results and Analysis 62 5.4.1 Simulation Environments and Parameters 63 5.4.2 Results and Discussion 66 5.5 Summary 75 Chapter 6 Conclusions and Future Works 76 Bibliography 79

    [1] A. Botta, W. D. Donato, V. Persico, and A. Pescapé, “Integration of cloud computing and internet of things: a survey,” Futur. Gener. Comp. Sy., vol. 56, pp. 684–700, Mar. 2016.
    [2] D. Jadhav and S. Nikam, “Need for resource management in IoT,” Int. J. Comput. Appl., vol. 134, no. 16, pp. 17–20, Jan. 2016.
    [3] D. Joshi, C. Kumari, and A. Srivastava, “Challenges and data mining model for IoT,” Int. J. Eng. Appl. Sci. Techn., vol. 1, no. 3, pp. 36–41, Jan. 2016.
    [4] Broadband Forum, “TR-069 CPE WAN management protocol amendment 5 specification,” Nov. 2013. [Online]. Available: http://www.broadband-forum.org/
    [5] K. Huguenin, E. L. Merrer, N. L. Scouarnec, and G. Straub, “Efficient and transparent wi-fi offloading for http(s) posts,” IEEE T. Mob. Comput., vol. 15, no. 4, pp. 826–839, Mar. 2016.
    [6] V. Bajpai and J. Schönwälder, “A survey on internet performance measurement platforms and related standardization efforts,” IEEE Commun. Surv. Tut., vol. 17, no. 3, pp. 1313–1341, Apr. 2015.
    [7] Z. Sheng, C. Mahapatra, C. Zhu, and V. C. M. Leung, “Recent advances in industrial wireless sensor networks toward efficient management in IoT,” IEEE Acces., vol. 3, pp. 622–637, May 2015.
    [8] J. A. Weitzen and R. Wakim, “Using informatics to manage and measure performance of large femtocell networks,” J. Da. Analy. Info. Proc., vol. 3, no. 2, pp. 20–26, May 2015.
    [9] M. Perras and J. Cartmell, “Mobility for heterogeneous smallnets,” Telecommun. Syst., vol. 61, no. 2, pp. 277–294, Mar. 2015.
    [10] A. Papageorgiou, “Protocol enhancements for moving from connected IoT to efficient IoT,” in Proc. 18th International Conference on Intelligence in Next Generation Networks (ICIN), Paris, France, Feb. 2015, pp. 58–63.
    [11] P. P. Deshpande, S. S. Bellale, U. A. Kadam, A. R. Gade, and S. A. Thanekar, “A novel VOD on-line social networks peer-to-peer networks & assisted,” Int. J. Res., vol. 3, no. 1, pp. 910–915, Jan. 2016.
    [12] C. D'Orazio and K.-K. R. Choo, “An adversary model to evaluate DRM protection of video contents on iOS devices,” Comput. Secur., vol. 56, pp. 94–110, Feb. 2016.
    [13] S. Almowuena, M. M. Rahman, C.-H. Hsu, A. A. Hassan, and M. Hefeeda, “Energy-aware and bandwidth-efficient hybrid video streaming over mobile networks,” IEEE T. Mult., vol. 18, no. 1, pp. 102–115, Nov. 2015.
    [14] S. Anuradha and V. Seema, “A survey report on LB algorithm in grid computing environment,” Int. J. Adv. Eng. Res. Stud., vol. 4, no. 2, pp. 128–132, Mar. 2015.
    [15] P. Shilpi, P. Shivika, K. Shreeya, and B. S. Rajeshwari, “LB techniques: a comprehensive study,” Int. J. Adv. Res. Comput. Sci. Manag. Stud., vol. 3, no. 4, pp. 331–335, Feb. 2015.
    [16] M. A. Mishra, “Network LB and its performance measures,” Int. J. Comput. Sci. Tren. Techn., vol. 3, no. 1, pp. 77–81, Feb. 2015.
    [17] D. K. Pankaj and C. Inderveer, “A resource elasticity framework for QoS-aware execution of cloud applications,” Futur. Gener. Comp. Sy., vol. 37, pp. 14–25, Jul. 2014.
    [18] H. Sun, T. Zhao, Y. Tang, and X. Liu, “A QoS-aware LB policy in multi-tenancy environment,” in Proc. IEEE 8th International Symposium on Service Oriented System Engineering (SOSE), Oxford, England, Apr. 2014, pp. 140–147.
    [19] B. Marta, “Automatic provisioning of multi-tier applications in cloud computing environments,” J. Supercomput., vol. 71, no. 6, pp. 2221–2250, Jun. 2015.
    [20] C. D. Shyam and S. D. Sudarshan, “A survey: LB for distributed file system,” Int. J. Comput. Appl., vol. 111, no. 5, pp. 25–29, Feb. 2015.
    [21] H.-T. Chang, Y.-M. Chang, and S.-Y. Hsiao, “Scalable network file systems with LB and fault tolerance for web services,” J. Syst. Soft., vol. 93, pp. 102–109, Jul. 2014.
    [22] H. J. Moon, H. Hacıgümüş, Y. Chi, and W.-P. Hsiung, “SWAT: a lightweight LB method for multitenant databases,” in Proc.16th International Conference on Extending Database Technology (EDBT), Genoa, Italy, Mar. 2013, pp. 65–76.
    [23] C.-C. Li and K. Wang, “An SLA-aware LB scheme for cloud datacenters,” in Proc. International Conference on Information Networking (ICOIN), Phuket, Thailand, Feb. 2014, pp. 58–63.
    [24] T. Carey and R. Pattabhiraman, “Management of virtual cpes,” U.S. Patent 20160020962 A1, Jan. 2016.
    [25] S. Lewis, R. Ghai, and D. F. Callan, “System and methods for providing virtualized cloud peering emulation services,” U.S. Patent 20160021684 A1, Jan. 2016.
    [26] J. E. Keum, S. O. Hwang, B. Jing, and D.-S. Jung, “Unified device management method and system,” U.S. Patent 8966013 B2, Feb. 2015.
    [27] S. Husain, A. Prasad, A. Kunz, A. Papageorgiou, and J. Song, “Recent trends in standards related to the internet of things and machine-to-machine communications,” J. lnf. Commun. Converg. Eng., vol. 12, no. 4, pp. 228–236, Dec. 2014.
    [28] M. J. Baugher, P. Nedeltchev, L. Perkov, and T. K. Thimmanaik, “Provisioning and managing slices of a consumer premises equipment device,” U.S. Patent 20150358399 A1, Dec. 2015.
    [29] P. Fang and H. Wu, “Method, apparatus and communication system for enabling terminal to be managed by multiple servers,” U.S. Patent 8683039 B2, Mar. 2014.
    [30] M. Dillon and T. Winters, “Virtualization of home network gateways,” Comput. J., vol. 47, no. 11, pp. 62–65, Nov. 2014.
    [31] B. Trifunović, V. Mihailović, N. Ignjatov, R. Simikić, and I. Velikić, “Android development framework for TR-069-based services,” in Proc. IEEE 4th International Conference on Consumer Electronics - Berlin (ICCE-Berlin), Berlin, Germany, Sep. 2014, pp. 492–494.
    [32] V. Mihailović, N. Ignjatov, M. Bojan, and T. Nikola, “Adaptive build system for TR-069 consumer device agent,” in Proc. IEEE 4th International Conference on Consumer Electronics - Berlin (ICCE-Berlin), Berlin, Germany, Sep. 2014, pp. 314–317.
    [33] R. Simikić, M. Ćetković, D. Stefanović, and N. Živanović, “On-site installation support tool for setup error prevention,” in Proc. IEEE 4th International Conference on Consumer Electronics - Berlin (ICCE-Berlin), Berlin, Germany, Sep. 2014, pp. 293–295.
    [34] M. Z. Bjelica, I. Papp, and N. Teslic, “Diagnostic CWMP client for set-top box devices,” in Proc. IEEE International Conference on Consumer Electronics (ICCE), Las Vegas, USA, Jan. 2014, pp. 464–465.
    [35] W.-C. Yang, J.-D. Jhan, D.-Y. Chen, K.-H. Lai, and R.-R. Lee, “Quality of service test mechanism and management of broadband access network,” in Proc. 16th Asia-Pacific Network Operations and Management Symposium (APNOMS), Hsinchu, Taiwan, Sep. 2014, pp. 1–4.
    [36] T. Cruz, P. Simões, E. Monteiro, F. Bastos, and A. Laranjeira, “Cooperative security management for broadband network environments,” Secur. Commun. Netw., vol. 8, no. 18, pp. 3953–3977, Jul. 2015.
    [37] K. L. Calvert, W. K. Edwards, N. Feamster, R. E. Grinter, Y. Deng, and X. Zhou, “Instrumenting home networks,” ACM SIGCOMM Comp. Com., vol. 41, no. 1, pp. 84–89, Jan. 2011.
    [38] H. Rachidi and A. Karmouch, “A framework for self-configuring devices using TR-069,” in Proc. International Conference on Multimedia Computing and Systems (ICMCS), Ouarzazate, Morocco, Apr. 2011, pp. 1–6.
    [39] B. Lin and P. Yan, “Jetty improves the performance of network management system based on TR069 protocol,” in Proc. IEEE International Conference on Intelligent Computing and Intelligent Systems (ICIS), Xiamen, China, Oct. 2010, pp. 799–801.
    [40] R. Ferrus, O. Sallent, J. Perez-Romero, and R. Agusti, “A solution framework to provide management services for wireless communications in the digital home,” IEEE Commun. Mag., vol. 50, no. 11, pp. 132–141, Nov. 2012.
    [41] K.-M. Lee, W.-G. Teng, J.-N. Wu, P.-Y. Chen, M.-K. Huang, and T.-W. Hou, “Dynamic distribution technique for session management in CWMP server clusters,” Electron. Lett., vol. 50, no. 22, pp. 1639–1641, Oct. 2014.
    [42] C.-S. Chen, C.-C. Chen, and K.-M. Lee, “Remote management systems and apparatuses for CWMP and methods for improving performance of remote management thereof,” U.S. Patent 20140321291 A1, Oct. 2014.
    [43] N. Poggi, T. Moreno, J. L. Berral, R. Gavaldí, and J. Torres, “Self-adaptive utility-based web session management,” Int. J. Comput. Netw., vol. 53, no. 10, pp. 1712–1721, Jul. 2009.
    [44] T. Huynh and J. Miller, “Empirical observations on the session timeout threshold,” Info. Proc. Manag., vol. 45, no. 5, pp. 513–528, Sep. 2009.
    [45] H. Lufei and W. Shi, “Energy-aware QoS for application sessions across multiple protocol domains in mobile computing,” Comput. Netw., vol. 51, no. 11, pp. 3125–3141, Aug. 2007.
    [46] K.-M. Lee, J.-N. Wu, P.-Y. Chen, and Y.-C. Chao, “Remote management system with adaptive session management mechanism,” U.S. Patent 8938495 B2, Jan. 2015.
    [47] R. G. Dobale, “LB in cloud,” Int. J. Eng. Res. Gen. Sci., vol. 3, no. 3, pp. 159–167, Jun. 2015.
    [48] V. B. Sarika and N. Radhakrishna, “Design of decentralized LB algorithm for cloud environment,” Int. Adv. Res. J. Sci. Eng. Technol., vol. 2, no. 5, pp. 19–24, May 2015.
    [49] K.-M. Lee, W.-G. Teng, and T.-W. Hou, “DRASE: a dynamic rescheduling and self-adaptive estimation approach to enhance ACS throughputs in CWMP,” Accepted by IEEE Comm. Lett., Aug. 2016.
    [50] K.-M. Lee, H. Chu, J. Chu, Y. Lin, C. Hsiao, and T.-W. Hou, “ACS management capacity enhancement mechanism in CWMP,” Electron. Lett., vol. 50, no. 2, pp. 118–120, Jan. 2014.
    [51] K. Singh and S. Thakur, “A review on femtocell and its 3G and 4G architectures,” Int. J. Comput. Sci. Mob. Comput., vol. 4, no. 6, pp. 1166–1176, Jun. 2015.
    [52] Z. Sheng, H. Wang, C. Yin, X. Hu, S. Yang, and V. C. M. Leung, “Lightweight management of resource-constrained sensor devices in internet of things,” IEEE IoT-J., vol. 2, no. 5, pp. 402–411, Apr. 2015.
    [53] K.-M. Lee, W.-G. Teng, M.-K. Huang, C.-P. Freg, and T.-W. Hou, “Exploiting a self-learning predictor for session-based remote management systems in a large-scale environment,” Accepted by J. Internet Technol., Aug. 2016.
    [54] Broadband Forum, “TR-106 data model template for TR-069-enabled devices amendment 7 specification,” Sep. 2013. [Online]. Available: http://www.broadband-forum.org/
    [55] IETF, “Session traversal utilities for NAT,” Oct. 2008. [Online]. Available: https://tools.ietf.org/html/rfc5389/
    [56] DSL Forum, “TR-111 applying TR-069 to remote management of home networking devices,” Dec. 2005. [Online]. Available: https://www.broadband-forum.org/technical/download/TR-111.pdf
    [57] V. T. Nair, A. J. Auradkar, A. Bose, and K. J. Weyer, “Method and apparatus for traffic regulation in a communication network,” U.S. Patent 20120155627 A1, Jun. 2012.
    [58] G. Cristallo and P. Vandaele, “Method, apparatus, and server for spreading file transfer notifications in time,” U.S. Patent 20120216238 A1, Aug. 2012.
    [59] T. Cruz, P. Simões, P. Batista, J. Almeida, E. Monteiro, and F. Bastos, “CWMP extensions for enhanced management of domestic network services,” in Proc. IEEE International Conference on Local Computer Networks (LCN), Denver, USA, Oct. 2010, pp. 180–183.
    [60] D. R. Shiyafetdinov, A. A. Kulaga, and S. A. Vasilyev, “System and method for remote administration of computer network,” U.S. Patent 8024450 B1, Sep. 2011.
    [61] A. Dubrovsky, Y. Chen, D. J. Strom, and J. E. Lavallee, “Methods and apparatus for managing requests,” U.S. Patent 7694007 B1, Apr. 2010.
    [62] G. C. Carpenter and G. S. G. Ziman, “Client-side method and apparatus for improving the availability and performance of network mediated services,” U.S. Patent 6748416 B2, Jun. 2004.
    [63] J. L. Huckins, “Controlling remote storage devices,” U.S. Patent 7072955 B1, Jul. 2006.
    [64] K. Fukuda, T. Hirotsu, S. Kurihara, S.-Y. Sato, O. Akashi, and T. Sugawara, “Dependency of network structures in agent selection and deployment,” in Proc. IEEE/WIC/ACM International Conference on Intelligent Agent Technology (IAT), Hong Kong, China, Dec. 2006, pp. 37–44.
    [65] J. K. So and D. S. Reeves, “Adaptive neighbor management for cooperative P2P video-on-demand streaming,” in Proc. IEEE International Performance Computing and Communications Conference (IPCCC), Orlando, USA, Nov. 2011, pp. 1–10.
    [66] I. Loy, J. Marberg, B. Shumeli, R. Curran, R. Haskin, F. Schmuck, and J. Wyllie, “Data management application programming interface session management for a parallel file system,” U.S. Patent 7111291 B2, Sep. 2006.
    [67] D. R. Blea, R. N. Crockett, G. E. McBride, A. G. McClure, and D. M. Shackelford, “Consolidating session information for a cluster of sessions in a coupled session environment,” U.S. Patent 7761431 B2, Jul. 2010.
    [68] P. Mittal and J. Chaita, “A survey on heterogeneous LB techniques in cloud computing,” Int. J. Innov. Res. Sci. Technol., vol. 1, no. 10, pp. 180–185, Mar. 2015.
    [69] R. Kanakala and V. K. Reddy, “Performance analysis of LB techniques in cloud computing environment,” Indo. J. Elec. Eng., vol. 13, no. 3, pp. 568–573, Mar. 2015.
    [70] A. A. Jaiswal and S. Jain, “An approach towards the dynamic load management techniques in cloud computing environment,” in Proc. International Conference on Power, Automation and Communication (INPAC), Amravati, India, Oct. 2014, pp. 112–122.
    [71] M. Janbeglou, H. Naderi, and N. Brownlee, “Effectiveness of DNS-based security approaches in large-scale networks,” in Proc. 28th International Conference on Advanced Information Networking and Applications Workshops (WAINAC), Victoria, Canada, May 2014, pp. 13–16.
    [72] S. Li, F. Wang, B. Xiao, F. Yang, X. Sun, and Y. Wang, “Study of LB technology for EAST data management,” Fus. Eng. Des., vol. 89, no. 5, pp. 750–753, May 2014.
    [73] G. Yang, “A self-organisation framework for LB in adaptive networks,” Chaos. Soliton. Fract., vol. 80, pp. 62–75, Nov. 2015.
    [74] S. Harikesh and K. Shishir, “WSQ: web server queueing algorithm for dynamic LB,” Wirel. Pers. Commun., vol. 80, no. 1, pp. 229–245, Jan. 2015.
    [75] M. Harshitha and K. Laxmikant, “A distributed dynamic load balancer for iterative applications,” in Proc. International Conference on High Performance Computing, Networking, Storage and Analysis (SC '13), Denver, USA, Nov. 2013, pp. 13–23.
    [76] M.-C. Chuang, M. C. Chen, and S. Yeali, “Resource management issues in 5G ultra dense smallcell networks,” in Proc. International Conference on Information Networking (ICOIN), Siem Reap, Cambodia, Jan. 2015, pp. 159–164.
    [77] S. Fortes, A. Aguilar-García, R. Barco, F. Barba, J. Fernández-Luque, and A. Fernández-Durán, “Management architecture for location-aware self-organizing LTE/LTE-a small cell networks,” IEEE Commun. Mag., vol. 53, no. 1, pp. 294–302, Jan. 2015.
    [78] J.-J. Tong, H.-H. E, M.-N. Song, and J.-D. Song, “Host load prediction in cloud based on classification methods,” J. China Univ. Pos. Telecom., vol. 21, no. 4, pp. 40–46, Aug. 2014.
    [79] M. B. Nagpure, P. Dahiwale, and P. Marbate, “An efficient dynamic resource allocation strategy for VM environment in cloud,” in Proc. International Conference on Pervasive Computing (ICPC), Pune, India, Jan. 2015, pp. 1–5.
    [80] J.-J. Jheng, F.-H. Tseng, H.-C. Chao, and L.-D. Chou, “A novel VM workload prediction using grey forecasting model in cloud data center,” in Proc. International Conference on Information Networking (ICOIN), Phuket, Thailand, Feb. 2014, pp. 40–45.
    [81] V. R. Chandakanna and V. K. Vatsavayi, “A sliding window based self-learning and adaptive load balancer,” J. Netw. Comput. Appl., vol. 56, pp. 188–205, Oct. 2015.
    [82] M. Z. Bjelica, G. Golan, S. Radovanović, I. Papp, and G. Velikić, “Adaptive device cloud for internet of things applications,” in Proc. IEEE International Conference on Consumer Electronics - China (ICCE-China), Shenzhen, China, Apr. 2014, pp. 1–3.
    [83] D. Parruca, M. Grysla, S. Görtzen, and J. Gross, “Analytical model of proportional fair scheduling in interference-limited OFDMA/LTE networks,” in Proc. IEEE Vehicular Technology Conference (VTC), Las Vegas, USA, Sep. 2013, pp. 1–7.
    [84] 3GPP, “3GPP TS 23.203 policy and charging control architecture,” Jan. 2015. [Online]. Available: http://www.3gpp.org/DynaReport/23203.htm/
    [85] Axiros, “Axiro axess CPE management product portfolio,” Axiros Axess ACS Prod. Spec., Jan. 2009.
    [86] A. Fei, G. Pei, R. Liu, and L. Zhang, “Measurements on delay and hop-count of the Internet,” in Proc. IEEE International Conference on Global Telecommunications (GLOBECOM), Sydney, Australia, Nov. 1998, pp. 1–8.
    [87] Akamai Releases, “State of the internet,” Aug. 2012. [Online]. Available: http://www.akamai.com/
    [88] H. Ding, H. Wu, X. Zhang, and J. Chen, “Writer identification based on local contour distribution feature,” Int. J. Sig. Proc., vol. 7, no. 1, pp. 169–180, Mar. 2014.
    [89] D. Rossi and E. Turrini, “Analyzing the impact of components replication in high available J2EE clusters,” in Proc. International Conference on Autonomic and Autonomous Systems and International Conference on Networking and Services (ICAS-ICNS), Papeete, Tahiti, Oct. 2005, pp. 56–66.
    [90] L. Cherkasova and P. Phaal, “Session-based admission control: a mechanism for peak load management of commercial web sites,” IEEE T. Comput., vol. 51, no. 6, pp. 669–685, Jun. 2002.
    [91] A. K. Mishra, “Towards characterizing cloud backend workloads: insights from Google compute clusters,” ACM Sigm. Perf. Eval. Rev., vol. 37, no. 4, pp. 34–41, Jun. 2010.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE