| 研究生: |
余睿靖 YU, JUI-CHING |
|---|---|
| 論文名稱: |
結合自働生產管理環與統計產出控制模式優化針劑製藥生產力之研究 The use of a Combined Jidoka-JIT Cycle and Statistical Throughput Control for Improving Productivity in Injectable Pharmaceutical Manufacturing |
| 指導教授: |
楊大和
Yang, Ta-ho |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 製造資訊與系統研究所 Institute of Manufacturing Information and Systems |
| 論文出版年: | 2025 |
| 畢業學年度: | 113 |
| 語文別: | 中文 |
| 論文頁數: | 129 |
| 中文關鍵詞: | 針劑製藥業 、自働生產管理環 、資訊流圖 、低程式碼開發平台 、統計產出控制 、準時達交率 、離散事件模擬 |
| 外文關鍵詞: | Injectable Pharmaceutical Industry, Jidoka-JIT Cycle, Information Stream Mapping (iSM), Low-Code Development Platform (LCDP), Statistical Throughput Control (STC), On-Time Delivery Rate, Discrete-Event Simulation |
| 相關次數: | 點閱:32 下載:15 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究針對針劑製藥產業在生產管理上面臨的問題,特別是傳統紙本批次記錄效率低落、生產資訊分散導致管理困難,以及製程變異性影響準時達交率等問題。本研究旨在結合數位化工具與精實管理,導入自働生產管理環(JJC 2.0)概念,利用低程式碼開發平台(Low-Code Development Platform, LCDPs)建構資訊系統,並整合統計產出控制(Statistical Throughput Control, STC)模型,以期優化生產資訊流、提升製程監控能力與決策管理,最終達成改善生產力與服務水準(如準時達交率)的目標。
本研究以一家針劑製藥廠為案例。首先,運用資訊流圖(Information Stream Mapping, iSM)方法,評估此系統導入前後的資訊傳遞效率與潛在浪費。解決生產瓶頸,Microsoft Power Platform建構一套雲端生產過帳系統,藉此取代傳統紙本記錄與分散式表單管理,實現生產數據的即時收集與集中化。其次,系統收集的生產數據進行分析以目視化識別異常狀況與瓶頸製程(異檢作業),並針對該瓶頸導入統計產出控制(STC)模型,建立動態監控與預測機制,用以評估不同生產配額(Quota)、製程變異程度及人力配置組合下的目標達成績效。最後,利用 Python進行離散事件模擬,比較在 STC 預警機制下,採取「中途增加人力」與「傳統加班」兩種應對策略的有效性與成本效益。
實證結果顯示,導入雲端過帳系統顯著改善資訊流效率,多項 iSM 指標獲得提升。變異數分析顯示,生產配額、製程變異與人力配置對生產績效的影響並非獨立,而是存在顯著的因子間交互作用。 STC 模型能監控生產進度並預測潛在延遲,其模擬結果與歷史數據吻合(多數誤差在±0.3小時內)。改善策略模擬顯示,基於 STC 監控即時增加人力,相較於傳統加班,多數能提升準時達交率且降低平均人力成本(本研究案例中約 3.66%)。
本研究成功建立一套雲端過帳系統,並已實際導入作業現場,同時整合 STC 模型輔助管理者決策,利用模擬驗證其優化生產力之可行性與成本效益。
This study addresses critical issues in the production management of the Injectable pharmaceutical industry, specifically the inefficiencies of traditional paper-based batch records, managerial difficulties stemming from dispersed production information, and the adverse impact of process variability on on-time delivery rates. This research aims to integrate digital tools with lean management principles by introducing the Jidoka-JIT Cycle concept. It leverages Low-Code Development Platforms (LCDPs) to construct an information system and integrates a Statistical Throughput Control (STC) model. The objective is to optimize production information flow, enhance process monitoring capabilities and decision-making, ultimately improving productivity and service levels, such as on-time delivery rates.
Employing a case study approach at an Injectable pharmaceutical plant, Information Stream Mapping (iSM) was initially utilized to assess information transmission efficiency and identify potential waste before and after system implementation. To address production bottlenecks, a cloud-based production posting system was developed using Microsoft Power Platform, replacing traditional paper-based records and decentralized form management, thereby enabling real-time data collection and centralization. Subsequently, production data collected by the system were analyzed to identify anomalies and bottleneck processes (specifically, visual inspection operations). The STC model was then implemented for this bottleneck, establishing a dynamic monitoring and predictive mechanism to evaluate target achievement performance under various combinations of production quotas, levels of process variability, and staffing configurations. Finally, discrete-event simulation was conducted using Python to compare the effectiveness and cost-benefit of two response strategies under the STC early warning mechanism: "mid-process manpower augmentation" and "overtime."
Empirical results indicate that the implementation of the cloud-based posting system significantly improved information flow efficiency, with enhancements observed in multiple iSM metrics. Analysis of Variance (ANOVA) revealed that production quotas, process variability, and staffing configurations non-independently affect production performance, exhibiting significant interaction effects. The STC model effectively monitored production progress and predicted potential delays, with its simulation results aligning closely with historical data (most discrepancies within ±0.3 hours). Simulation of improvement strategies demonstrated that real-time manpower augmentation based on STC monitoring, compared to an overtime strategy, can generally improve on-time delivery rates while reducing average labor costs (by approximately 3.66% in this case study).
This study successfully developed a cloud-based posting system, which has been implemented in on-site operations. Concurrently, the STC model was integrated to support managerial decision-making, and simulation was used to validate its feasibility and cost-effectiveness in optimizing productivity.
王歆彤(2024),生物科技產業微生物發酵之製造排程與設備管理數位轉型之研究,國立成功大學製造資訊與系統研究所碩士論文,台南。
經濟部產業發展署(2024),《2024生技產業白皮書》,取自:https://www.biopharm.org.tw/(2025/04/04取得)
蔡亞萍(2024),全球醫藥產業現況,財團法人生物技術開發中心,2024年03月13日,取自:https://www.rockwellautomation.com/content/dam/rockwell-automation/documents/pdf/events/tw-event/2024-pharma-day/1.DCB_%E8%A3%BD%E8%97%A5%E6%A5%AD%E7%9A%84%E7%8F%BE%E6%B3%81%E5%88%86%E6%9E%90.pdf(2025/04/04取得)
楊大和,2024,數位與精實的融合-簡易智慧化,「2024年精實企業-數位與精實融合」論壇,經濟部產業發展署,2024年10月22日,裕元花園酒店,台中。
楊大和、李兆華 (2021),數位轉型是持續改善的過程—自働生產管理環為例,工業工程雜誌,取自:https://sites.google.com/ciie.org.tw/column220901(2025/04/04取得)
Microsoft (2025a),AI 支援的低程式碼工具 Microsoft Power Platform,取自:http://microsoft.com/zh-tw/power-platform(2025/04/04取得)
Microsoft (2025b),官方Microsoft Power Platform 文件,取自:https://learn.microsoft.com/zh-tw/power-platform/(2025/04/04取得)
MasterControl (2019),《批次記錄的主要痛點白皮書》,取自:https://www.mastercontrol.com/(2025/04/11 取得)
SAP (2025),SAP 台灣全球ERP系統與企業管理解決方案領導者,取自:https://www.sap.com/taiwan/index.html(2025/04/04取得)
Bega, M., Sapel, P., Ercan, F., Schramm, T., Spitz, M., Kuhlenkötter, B., & Hopmann, C. (2023). Extension of value stream mapping 4.0 for comprehensive identification of data and information flows within the manufacturing domain. Production Engineering, 17(6), 915-927, Available: https://doi.org/10.1007/s11740-023-01207-5 (2025/04/04 retrieved)
Bock, A. C., & Frank, U. (2021). Low-code platform. Business & Information Systems Engineering, 63, 733-740
Bratincevic, J., & Koplowitz, R. (2021). The Forrester Wave™: Low-Code Development Platforms For Professional Developers, Q2 2021. Forrester Research.
Cohen, J. (2013). Statistical Power Analysis for the Behavioral Sciences. Routledge, New York, USA.
Dahlberg, D. (2020). Developer Experience of a Low-code Platform: An Exploratory Study, Umeå University, Sweden.
Di Ruscio, D., Kolovos, D., de Lara, J., Pierantonio, A., Tisi, M., & Wimmer, M. (2022). Low-code development and model-driven engineering: Two sides of the same coin? Software and Systems Modeling, 21(2), 437-446.
Elshan, E., Dickhaut, E., & Ebel, P. A. (2023). An investigation of why low code platforms provide answers and new challenges. Proceedings of the 56th Hawaii International Conference on System Sciences, Hawaii, USA.
Ghasemi, A., & Zahediasl, S. (2012). Normality tests for statistical analysis: a guide for non-statisticians. International Journal of Endocrinology and Metabolism, 10(2), 486.
Hopp, W. J., & Roof, M. (1998). Setting WIP levels with statistical throughput control (STC) in CONWIP production lines. International Journal of Production Research, 36(4), 867-882.
Hopp, W. J., & Spearman, M. L. (2011). Factory Physics (3 ed.). Waveland Press.
Janssen, W. (2008). Data management in the cell therapy production facility: the batch process record (BPR). Cytotherapy, 10(3), 227-237.
Kelton, W. D., Sadowski, R. P., & Sadowski, D. A. (2002). Simulation with ARENA. McGraw-Hill, Inc., USA.
Kusiak, A. (2020). Open manufacturing: a design-for-resilience approach. International Journal of Production Research, 58(15), 4647-4658.
Leal, F., Chis, A. E., Caton, S., González–Vélez, H., García–Gómez, J. M., Durá, M., Sánchez–García, A., Sáez, C., Karageorgos, A., & Gerogiannis, V. C. (2021). Smart pharmaceutical manufacturing: ensuring end-to-end traceability and data integrity in medicine production. Big Data Research, 24, 100172.
Meudt, T., Metternich, J., & Abele, E. (2017). Value stream mapping 4.0: Holistic examination of value stream and information logistics in production. CIRP Annals, 66(1), 413-416.
Negahban, A., & Smith, J. S. (2014). Simulation for manufacturing system design and operation: Literature review and analysis. Journal of Manufacturing Systems, 33(2), 241-261.
Pearson, M., Knight, B., Knight, D., Quintana, M., Pearson, M., Knight, B., Knight, D., & Quintana, M. (2020). Pro Microsoft Power Platform: Solution Building for the Citizen Developer, Apress, USA.
Primasanti, Y. (2022). Power Apps pada Sistem Pemodelan Pengambilan Obat di Klinik Melia PT. POMI, Paiton. Jurnal Rekavasi, 10(2), 21-29.
Raviteja, M., & Gupta, N. V. (2013). A review on electronic data management in pharmaceutical industry. Asian Journal of Pharmaceutical and Clinical Research, 6(2), 38-42.
Razali, N. M., & Wah, Y. B. (2011). Power comparisons of shapiro-wilk, kolmogorov-smirnov, lilliefors and anderson-darling tests. Journal of Statistical Modeling and Analytics, 2(1), 21-33.
Richardson, C., Rymer, J. R., Mines, C., Cullen, A., & Whittaker, D. (2014). New development platforms emerge for customer-facing applications. Forrester: Cambridge, MA, USA.
Roh, P., Kunz, A., & Wegener, K. (2019). Information stream mapping: Mapping, analysing and improving the efficiency of information streams in manufacturing value streams. CIRP Journal of Manufacturing Science and Technology, 25, 1-13.
Rother, M., & Shook, J. (1999). Value-stream mapping to create value and eliminate muda. The Lean Enterprise Institute, Brookline, USA.
Rybaric, R. (2023). Microsoft Power Platform Enterprise Architecture: Design tailor-made solutions for architects and decision makers to meet complex business requirements. Packt Publishing Ltd., Birmingham, UK.
Sandhu, J. K. (2021). Robotic process automation for prioritizing the refund in online travel agency. 2021 International Conference on Advanced Computing and Innovative Technologies in Engineering (ICACITE), Greater Noida, India.
Shapiro, S. S., & Wilk, M. B. (1965). An analysis of variance test for normality (complete samples). Biometrika, 52(3-4), 591-611.
Shi, N., Liu, H., & Liu, Y. (2015). Study and Application of Electronic Records in the Pharmaceutical Equipment. 2015 2nd International Conference on Electrical, Computer Engineering and Electronics, Jinan, China.
Stamatiadis, D. (2005). Digital archiving in the pharmaceutical industry: while relatively new as a retention method in the drug industry, e-archiving of records is a must-do to best ensure the health of patients and the industry. Information Management Journal, 39(4), 54-58.
USA.gov. (2025). Overtime Pay. https://www.usa.gov/overtime-pay (2025/05/04 retrieved)
van der Aalst, W. M. P., Bichler, M., & Heinzl, A. (2018). Robotic Process Automation. Business & Information Systems Engineering, 60(4), 269-272, Available: https://doi.org/10.1007/s12599-018-0542-4 (2025/04/04 retrieved)
Wang, X. (2023). Enhancing Business Processes through Dynamics Solutions with Microsoft Power Platform, Bachelor’s Thesis, Metropolia University of Applied Sciences, Finland.
Weston, M. (2019). Learn Microsoft PowerApps: Build customized business applications without writing any code. Packt Publishing Ltd.
ZipRecruiter. (2025). Pharmaceutical Manufacturing Operator Salary. https://www.ziprecruiter.com/Salaries/Pharmaceutical-Manufacturing-Operator-Salary (2025/05/04 retrieved)