簡易檢索 / 詳目顯示

研究生: 雷媛媛
Lei, Yuan-Yuan
論文名稱: 以厭氧生物系統及好氧薄膜生物反應器處理晶圓封測有機廢水之評估
Biological treatment of organic wastewaters from semiconductor industry using Anaerobic process and Aerobic Membrane Bioreactor
指導教授: 黃良銘
Whang, Liang-Ming
學位類別: 碩士
Master
系所名稱: 工學院 - 環境工程學系
Department of Environmental Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 英文
論文頁數: 103
中文關鍵詞: 二甲基亞碸DMSO降解菌甲烷菌食微比二甲基硫
外文關鍵詞: DMSO, DMSO-degrading bacteria, methanogen, S0/X0 ratio, DMS
相關次數: 點閱:161下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究探討半導體製程中之晶圓封測有機廢水的生物可降解性,其中有機硫化合物二甲基亞碸(DMSO)為晶圓封測有機廢水的主要成分之ㄧ,故本研究亦針對DMSO探討好氧及厭氧狀態下的降解效率,並利用分子生物技術了解對應之降解微生物菌群,以建立處理DMSO 高有機廢液的最佳程序。在好氧條件下以薄膜生物反應器(MBR)測試DMSO降解效率,結果顯示高DMSO進流濃度會抑制DMSO的降解。當DMSO濃度從1000 mg/L 降至250 mg/L 時,DMSO去除效率由4 %上升至39 %。另外從好氧批次試驗結果顯示,在添加2 ppm Polymer、汙泥濃度約3000 mg/L時,需至少50小時能完全降解濃度250 mg/L之DMSO。在微生物部份,DMSO降解菌Hyphomicrobium sp.為最優勢菌種,由Hyphomicrobium sp.、Thiobacillus sp.兩種DMSO降解菌與氨氧化菌菌數產生相對變化,可以看出微生物族群對DMSO之降解產生的影響。於厭氧批次試驗部分,結果顯示不論採用何種汙泥來源均有食微比( S0/X0 )越小DMSO比降解速率越高的趨勢。且當DMSO濃度高於4000 mg/L時,不論是否提高污泥濃度,皆會對厭氧微生物造成抑制的現象。從厭氧微生物分析,結果顯示於本研究中,具有分解DMSO潛力之甲烷菌除了Methanomethylovorans外,還包含Methanosarcina、Methanolobus zinderi、Methanomethylovorans、Methanosaeta及一未知甲烷菌,尤其未知甲烷菌似乎有能力將DMS作為基質利用最後產生硫化氫氣體及甲烷氣。然而在厭氧批次試驗發現DMSO很容易還原成DMS並有累積的趨勢,但是經由密封之好氧批次試驗,DMS可以在好氧條件下轉換成硫酸鹽,去除了厭氧條件產生的臭味問題,但是好氧處理DMS濃度需控制在800 mg/L以下,避免高濃度之DMS會對好氧污泥造成抑制。因此本研究以厭氧及好氧結合之生物處理程序處理半導體製程中產生之高有廢液是可行的。然而在好氧條件下之最操作做條件為DMSO濃度為250 mg/L搭配50小時之水利停留時間;在厭氧條件下之最佳操作條件為DMSO濃度低於4000 mg/L。

    In this study, the feasibility and optimal condition for biodegradation of organic wastewater provided by semiconductor industry was investigated. Dimethyl sulphoxide (DMSO) was the main component of the organic wastewater. Therefore, the DMSO biodegradation efficiency was discussed in this study by using membrane bioreactor (MBR) and several batch tests to treat the wastewater from semiconductor industry. Besides, molecular biotechnology was applied to understand the microbial population of DMSO biodegradation under aerobic and anaerobic conditions respectively. Under aerobic condition, MBR system was used to test the DMSO degradation efficiency. The results showed that high DMSO concentration would inhibit the DMSO degradation. When the inflow DMSO concentration decreased from 1000 mg/L to 250 mg/L, DMSO degradation efficiency increased from 4 % to 39 %. Furthermore, from the results of polymer addition batch test, it took at least 50 hours to fully degrade 250 mg/L of DMSO concentration. For the aerobic microbial part that Hyphomicrobium sp. was the most dominant species of DMSO-degrading bacteria. However, the influence of DMSO degradation efficiency might reflect on the changing abundance of Hyphomicrobium sp., Thiobacillus sp. and ammonia-oxidizing bacteria. Under anaerobic condition, the result showed lower S0/X0 ratio could get higher specific DMSO degradation rate. Furthermore, it was speculated that DMSO degradation was inhibited when DMSO concentration was higher than 4000 mg/L. For the anaerobic microbial part, it showed that not only Methanomethylovorans, but also Methanosarcina, Methanolobus zinderi, Methanomethylovorans, Methanosaeta and an unknown methanogens species were all contributed to anaerobic DMSO degradation. Particularly, unknown methane bacteria seemed to have the ability to use DMS as substrate. However, DMS accumulation could be solved via aerobic batch test with closed system. DMS transferred to sulfate under aerobic conditions effectively Hence, by combining anaerobic and aerobic biological treatment process to treat organic wastewater of semiconductor industry was a feasible way in this study. And the optimal operation under aerobic condition was DMSO concentration lower than 250 mg/L with 50 hours of HRT, and the optimal operation under anaerobic condition was DMSO concentration lower than 4000 mg/L.

    摘要 I Abstract III Acknowledgement V Table of Content IX List of Tables XIII List of Figures XVII Chapter 1 Introduction 1 Chapter 2 Literature Review 3 2.1 Semiconductor industry 3 2.2 Characteristic of Semiconductor industry wastewater 4 2.2.1 General characteristic 4 2.2.2 Characteristic of Di-methyl sulfoxide (DMSO) 5 2.2.3 Characteristic of Tetra-methyl ammonium hydroxide (TMAH) 6 2.2.4 Characteristic of Mono-ethanolamine (MEA) 7 2.2.5 Characteristic of N-Methyl-2-pyrrolidone (NMP) 8 2.3 Biodegradation Mechanisms of Semiconductor industry wastewater 9 2.3.1 Biodegradation Mechanisms of Dimethyl-sulfoxide (DMSO) 9 2.3.2 Biodegradation Mechanisms of Tetra-methyl ammonium hydroxide (TMAH) 13 2.3.3 Biodegradation Mechanisms of Mono-ethanolamine (MEA) 16 2.3.4 Biodegradation Mechanisms of N-Methyl- 2-pyrrolidone (NMP) 17 2.4 Membrane Bioreactor (MBR) 18 2.5 Molecular Biotechnology 20 Chapter 3 Material and Methods 23 3.1 Organic wastewater from semiconductor industry Wastewater characteristic 24 3.2 Laboratory scale Membrane Bioreactor (MBR) 27 3.3 Batch experiment 30 3.3.1 Aerobic batch experimental design 30 3.3.2 Anaerobic batch experimental design 33 3.3.3 Aerobic batch experimental design with closed system 35 3.4 Analytical Methods 37 3.4.1 General analysis 37 3.4.2 Instrumental analysis 38 3.5 Application of Molecular Biotechnology method 40 3.5.1 DNA Extraction and concentration measurement 41 3.5.2 Polymer Chain Reaction (PCR) 43 3.5.3 Real-time Quantitative Polymerase Chain Reaction (qPCR) 45 3.5.4 Terminal Restriction Fragment Length Polymorphism (T-RFLP) 49 Chapter 4 Results and discussion 53 4.1 Biological treatment of semiconductor wastewater under aerobic condition 54 4.1.1 Batch test for aerobic treatment feasibility 54 4.1.2 Membrane Bioreactor (MBR) for incubating aerobic microorganisms 57 4.1.3 Continuous operation of MBR 60 4.1.4 Aerobic microorganism analysis 69 4.1.5 Summary of Aerobic biological treatment 70 4.2 Biological treatment of semiconductor wastewater under anaerobic condition 71 4.2.1 The first stage of anaerobic batch test 72 4.2.2 The second stage of anaerobic batch test 75 4.2.3 The third stage of anaerobic batch test 80 4.2.4 The fourth stage of anaerobic batch test 84 4.2.5 Anaerobic microorganism analysis 88 4.2.6 Summary of anaerobic biological treatment 91 4.3 Biological treatment of semiconductor wastewater under aerobic condition with closed system 93 Chapter 5 Conclusions and Suggestions 97 Reference 99

    American Public Health, A. "Water Environment Federation." Standard methods for the examination of water and wastewater 19.(1995).

    Anthoni, U., L. Bohlin, C. Larsen, P. Nielsen, N. H. Nielsen and C. Christophersen "Tetramine: occurrence in marine organisms and pharmacology." Toxicon 27(7): 707-716.(1989).

    Anthony, C. Biochemistry of methylotrophs. Academic Press.(1982).

    Bentley, R. and T. G. Chasteen "Environmental VOSCs––formation and degradation of dimethyl sulfide, methanethiol and related materials." Chemosphere 55(3): 291-317.(2004).

    Boeniger, M. F., L. K. Lowry and J. Rosenberg "Interpretation of urine results used to assess chemical exposure with emphasis on creatinine adjustments: a review." The American Industrial Hygiene Association Journal 54(10): 615-627.(1993).

    Cai, S., T. Cai, S. Liu, Q. Yang, J. He, L. Chen and J. Hu "Biodegradation of N-methylpyrrolidone by Paracoccus sp. NMD-4 and its degradation pathway." International Biodeterioration & Biodegradation 93: 70-77.(2014).

    Chadwick, S. S. "Ullmann's Encyclopedia of Industrial Chemistry." Reference Services Review 16(4): 31-34.(1988).

    Chen, T., C. Ni and J. Chen "Nitrification–denitrification of opto-electronic industrial wastewater by anoxic/aerobic process." Journal of Environmental Science and Health, Part A 38(10): 2157-2167.(2003).

    Cho, K.-S., L. Zhang, M. Hirai and M. Shoda "Removal characteristics of hydrogen sulphide and methanethiol by Thiobacillus sp. isolated from peat in biological deodorization." Journal of Fermentation and Bioengineering 71(1): 44-49.(1991).

    Cicek, N. "A review of membrane bioreactors and their potential application in the treatment of agricultural wastewater." Canadian Biosystems Engineering 45: 6.37-36.37.(2003).

    De Bont, J., J. Van Dijken and W. Harder "Dimethyl sulphoxide and dimethyl sulphide as a carbon, sulphur and energy source for growth of Hyphomicrobium S." Journal of general microbiology 127(2): 315-323.(1981).

    Fukushima, T., L.-M. Whang, P.-C. Chen, D. W. Putri, M.-Y. Chang, Y.-J. Wu and Y.-C. Lee "Linking TFT-LCD wastewater treatment performance to microbial population abundance of Hyphomicrobium and Thiobacillus spp." Bioresource Technology 141: 131-137.(2013).

    Hampton, D. and L. J. Zatman "The metabolism of tetramethylammonium chloride by bacterium 5H2." Biochemical Society Transactions 1(3): 667-668.(1973).

    Higgins, M. J., Y.-C. Chen, D. P. Yarosz, S. N. Murthy, N. A. Maas, D. Glindemann and J. T. Novak "Cycling of volatile organic sulfur compounds in anaerobically digested biosolids and its implications for odors." Water Environment Research: 243-252.(2006).

    Hirano, K., J. Okamura, T. Taira, K. Sano, A. Toyoda and M. Ikeda "An efficient treatment technique for TMAH wastewater by catalytic oxidation." Semiconductor Manufacturing, IEEE Transactions on 14(3): 202-206.(2001).

    Hwang, S.-C. J., J.-Y. Wu, Y.-H. Lin, I. C. Wen, K.-Y. Hou and S.-Y. He "Optimal dimethyl sulfoxide biodegradation using activated sludge from a chemical plant." Process Biochemistry 42(10): 1398-1405.(2007).

    Keltjens, J. T. and G. D. Vogels (1993). Conversion of methanol and methylamines to methane and carbon dioxide. Methanogenesis, Springer: 253-303.

    Koito, T., M. Tekawa and A. Toyoda "A novel treatment technique for DMSO wastewater." Semiconductor Manufacturing, IEEE Transactions on 11(1): 3-8.(1998).

    Lai, B. and W. K. Shieh "Batch monoethylamine degradation via nitrate respiration." Water Research 30(10): 2530-2534.(1996).

    Lane, D. J. "16S/23S rRNA sequencing." Nucleic acid techniques in bacterial systematics: 125-175.(1991).

    Lee, C., J. Kim, S. G. Shin and S. Hwang "Absolute and relative QPCR quantification of plasmid copy number in Escherichia coli." Journal of biotechnology 123(3): 273-280.(2006).

    Lei, C.-N., L.-M. Whang and P.-C. Chen "Biological treatment of thin-film transistor liquid crystal display (TFT-LCD) wastewater using aerobic and anoxic/oxic sequencing batch reactors." Chemosphere 81(1): 57-64.(2010).

    Lomans, B. P., H. J. M. O. den Camp, A. Pol, C. van der Drift and G. D. Vogels "Role of methanogens and other bacteria in degradation of dimethyl sulfide and methanethiol in anoxic freshwater sediments." Applied and Environmental Microbiology 65(5): 2116-2121.(1999).

    Lomans, B. P., H. J. M. O. den Camp, A. Pol and G. D. Vogels "Anaerobic versus aerobic degradation of dimethyl sulfide and methanethiol in anoxic freshwater sediments." Applied and Environmental Microbiology 65(2): 438-443.(1999).

    Lomans, B. P., C. Van der Drift, A. Pol and H. J. M. O. Den Camp "Microbial cycling of volatile organic sulfur compounds." Cellular and Molecular Life Sciences CMLS 59(4): 575-588.(2002).

    Muyzer, G. and K. Smalla "Application of denaturing gradient gel electrophoresis (DGGE) and temperature gradient gel electrophoresis (TGGE) in microbial ecology." Antonie van Leeuwenhoek 73(1): 127-141.(1998).

    Ndegwa, A. W., R. C. K. Wong, A. Chu, L. R. Bentley and S. R. D. Lunn "Degradation of monoethanolamine in soil." Journal of Environmental Engineering and Science 3(2): 137-145.(2004).

    Osborn, A. M. Molecular microbial ecology. BIOS Scientific Publ.(2005).

    Park, S.-J., T.-I. Yoon, J.-H. Bae, H.-J. Seo and H.-J. Park "Biological treatment of wastewater containing dimethyl sulphoxide from the semi-conductor industry." Process Biochemistry 36(6): 579-589.(2001).

    Rhee, S.-K., S.-T. Lee, K.-Y. Lee and J.-C. Chung "Degradation of pyridine by Nocardioides sp. strain OS4 isolated from the oxic zone of a spent shale column." Canadian journal of microbiology 43(2): 205-209.(1997).

    Solomon, G. M., E. P. Morse, M. J. Garbo and D. K. Milton "Stillbirth after occupational exposure to N-methyl-2-pyrrolidone: a case report and review of the literature." Journal of occupational and environmental medicine 38(7): 705-713.(1996).

    Thong, J. T. L., W. K. Choi and C. W. Chong "TMAH etching of silicon and the interaction of etching parameters." Sensors and Actuators A: Physical 63(3): 243-249.(1997).

    Urakami, T., H. Araki, H. Oyanagi, K.-I. Suzuki and K. Komagata "Paracoccus aminophilus sp. nov. and Paracoccus aminovorans sp. nov., which utilize N, N-dimethylformamide." International journal of systematic bacteriology 40(3): 287-291.(1990).

    Visvanathan, C., R. B. Aim and K. Parameshwaran "Membrane separation bioreactors for wastewater treatment." Critical Reviews in Environmental Science and Technology 30(1): 1-48.(2000).

    Woese, C. R. "Bacterial evolution." Microbiological reviews 51(2): 221.(1987).

    Zhang, L., M. Hirai and M. Shoda "Removal characteristics of dimethyl sulfide, methanethiol and hydrogen sulfide by Hyphomicrobium sp. 155 isolated from peat biofilter." Journal of Fermentation and Bioengineering 72(5): 392-396.(1991).

    無法下載圖示 校內:2021-08-10公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE