簡易檢索 / 詳目顯示

研究生: 葉俊麟
Yeh, Chun-lin
論文名稱: 氧化鉿與氧化鋯薄膜應用於氮化鎵光電元件之研究
The study of HfOx and ZrOx thin film Application to GaN Optoelectronic Devices
指導教授: 張守進
Chang, Shoou-jinn
蔡宗祐
Tsai, Tzong-yow
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2009
畢業學年度: 97
語文別: 英文
論文頁數: 64
中文關鍵詞: 氧化鉿氧化鋯氮化鎵蕭基二極體
外文關鍵詞: HfO2, ZrO2, schottky diode, GaN
相關次數: 點閱:62下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 於本論文中,將氧化鉿與氧化鋯等高介電值氧化物沉積於氮化鎵基板上,本論文所使用之氮化鎵係以有機化學氣相磊晶成長系統所成長,再使用射頻濺鍍系統將介電質沉積於氮化鎵基板上,以原子力顯微鏡、薄膜X光繞射儀以及掃描式電子顯微鏡等儀器對介電質進行材料分析,並取最佳化之製程參數作為備製介電層之條件。首先使用黃光製程定義電極圖形,再以電子束蒸鍍 (鎳/金) 金屬薄膜,將氮化鎵製作成金屬-半導體-金屬紫外光檢測器,並取最佳之電極回火參數提升電極透明度與接面特性,達到增加光子入射量與降低漏電流之目的。將已沉積介電層之氮化鎵以上述製程製作成金屬-介電層-半導體結構之紫外光檢測器元件,此結構雖可有效降低漏電流,卻同時造成光電流降低。為改善金屬-介電層-半導體光檢測器之缺點,製作蕭基二極體以提升光檢測器之光電流,此結構亦保留其低漏電流之良好特性。

    In this thesis, the high-k insulators including HfO2 and ZrO2 were deposition on GaN substrates. The GaN had grown by metal organic vapor phase epitaxy (MOCVD) and dielectrics were deposited on GaN substrate by RF-sputter in this study. In the insulator material analysis, the atomic force microscopy (AFM), Thin-films X-ray diffractometer (TF-XRD) and scanning electron microscope (SEM) were employed to confirm the quality of dielectrics. Metal-semiconductor-metal (MSM) photodetectors were fabricated by photolithography, e-beam evaporator and annealed in oxygen subsequently. Annealing not only increased the transparent of the metal contact layer but also reduced the leakage current. Metal-insulator-semiconductor (MIS) photodetectors were fabricated by GaN that deposited insulators. Although this structure could reduce leakage current but the photo current could also lose. Schottky diodes could improve photo current and reduce leakage current.

    摘要 I Abstract II Acknowledgements III Table captions VII Figure captions VIII Chapter 1. Introduction 1 1.1 Background 1 1.1.1 Introduction of GaN 1 1.1.2 Introduction of high-k insulators 1 1.2 Motivation 2 1.3 Program 3 1.4 Reference 4 Chapter 2. Basic theory and measurement system 9 2.1 Metal-semiconductor contact 9 2.2 High-k insulators 11 2.3 Principle of the MSM photodetector 11 2.4 Instruments 14 2.4.1 Atomic force microscopes (AFM) 14 2.4.2 Thin-films X-ray diffractometer (TF-XRD) 15 2.4.3 Hall measurement 15 2.4.4 Spectral response and noise measurement systems 16 2.5 Reference 17 Chapter 3. Experiment 26 3.1 Insulators deposition 26 3.2 Fabrication of GaN MSM photodetectors 26 3.3 Fabrication of GaN MIS photodetectors and passivation 27 3.4 Fabrication of schottky diodes 28 Chapter 4. Material characteristics analysis 33 4.1 Surface properties 33 4.1.1 Roughness 33 4.1.2 Surface appearances 33 4.2 Transmittance 34 4.3 Crystallization 34 4.4 Reference 35 Chapter 5. Electric characteristic analysis 42 5.1 Hall measurement 42 5.2 Electric characteristics of MSM PDs 42 5.3 Electric characteristics of MIS PDs 42 5.3.1 Electrode annealing 42 5.3.2 Photo to dark current 43 5.3.3 Spectral responses 43 5.4 Electric characteristics of passivation on MSM PDs 43 5.4.1 Photo to dark current 43 5.4.2 Spectral responses 44 5.5 Electric characteristics of schottky diodes 44 5.5.1 Photo to dark current 44 5.5.2 Spectral responses 45 5.6 Noise 45 Chapter 6. Conclusion and future work 63 6.1 Conclusion 63 6.2 Future work 64

    Chapter 1
    [1] H. Morkoe, S. Strite, G. B. Gao, M. E. Lin, B. Sverdlov, and M. Burns, J. Appl. Phys., Vol. 76, 1363, (1994)
    [2] M.L. Lee, E.A. Fitgerald, Appl. Phys. Lett. 83, 4202, (2003)
    [3] S. Datta, G. Dewey, M. Doczy, B.S. Doyle, B. Jin, J. Kavalieros, R.Kotlyar,M. Metz, N. Zelick, R. Chau, Tech. Digest. IEDM 653, (2003)
    [4] M.M. Frank, G.D. Wilk, D. Starodub, T. Gustafsson, E. Garfunkel,Y.J. Chabal, J. Grazul, D.A. Muller, Appl. Phys. Lett. 86, 152904, (2005)
    [5] M. Passlack, R. Droopad, K. Rajagopalan, J. Abrokwah, R. Gregory, D.Nguyen, IEEE ED Lett. 26, 713, (2005)
    [6] Z. Yu, C.D. Overgaard, R. Droopad, M. Passlack, Appl. Phys. Lett. 82, 2978, (2003)
    [7] G. Wilk, R.M. Wallace, J.M. Anthony, J. Appl. Phys. 89, 5243, (2001)
    [8] J. Robertson, Eur. Phys. J. Appl. Phys. 28, 265, (2004)
    [9] M.J. Hale, S.I. Yi, A.C. Kummel, M. Passlack, J. Chem. Phys. 119, 6719, (2003)
    [10] Bernard Gil, Group III Nitride Semiconductor Compounds (Oxford, New York, 1998)
    [11] B. Tabbert, C. Hicks, E. Bartley, H. Wu, R. Metzler, and A. O. Goushcha, SPIE., Vol. 5726, 10, (2005)
    [12] Y. Z. Chiou, Y. K. Su, S. J. Chang, J. Gong, Y. C. Lin, S. H. Liu, and C.S. Chang, IEEE Journal of Quantum Electronics, Vol. 39, 681, (2003)
    [13] S. S. Liu, P. W. Li, W. J. Lin, Materials Science and Engineering, B 122, 196-200, (2005)
    [14] Jun Ohsawa, Takahiro Kozawa, Osamu Ishiguro, and Hiroshi Itoh, Jpn. J. Appl. Phys., Vol. 45, L435, (2006)
    [15] R. F. Davis, Proc. IEEE , Vol. 5, 702, (1991)
    [16] J. C. Carrano, T. Li, P. A. Grudowski, C. J. Eiting, R. D. Dupuis, and J. C. Campbell, Appl. Phys. Lett., Vol. 72, 542, (1998)

    Chapter 2
    [1] E. H. Rhoderick and R. H. Williams, Metal-Semiconductor Contacts, (Clarendon Press, Oxford, 1998)
    [2] S. M. Sze, Semiconductor Device Physics and Technology, 160, (1985)
    [3] J. Hubbard, D.G. Schlom, J. Mater. Res. 11 (1996) 2757, D.G. Schlom, J.H. Haenni, MRS Bull. 27, 198, (2002)
    [4] J. Robertson, J. Vac. Sci. Technol. B 18 (2000) 1785.
    [5] S. M. Sze, Semiconductor Device Physics and Technology, 278, (1985)
    [6] S. M. Sze, D. J. Coleman, JR. and A. Loya, Solid-State Electronics, Vol. 14, 1209, (1971)

    Chapter 4
    [1] Hei Wong, Proceedings of the Fifth IEEE International Caracas Conference on Devices, Circuits and Systems, Dominican Republic, Nov.3-5, (2004)

    下載圖示 校內:2010-07-17公開
    校外:2010-07-17公開
    QR CODE