簡易檢索 / 詳目顯示

研究生: 蔡瑋倫
Tsai, Wei-Lun
論文名稱: 胰臟彈性蛋白酶的特性及功能性研究與其臨床應用
Characterization and Functional Study of Pancreatic Elastase and Its Clinical Application
指導教授: 謝淑珠
Shiesh, Shu-Chu
學位類別: 碩士
Master
系所名稱: 醫學院 - 醫學檢驗生物技術學系
Department of Medical Laboratory Science and Biotechnology
論文出版年: 2007
畢業學年度: 95
語文別: 英文
論文頁數: 68
中文關鍵詞: 膽道阻塞胰臟彈性蛋白酶
外文關鍵詞: biliary obstruction, Pancreatic Elastase
相關次數: 點閱:156下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 現今對於鑑別良性與惡性膽道疾病仍是一大難題。過去的研究顯示,許多膽汁中的腫瘤標誌靈敏度及特異性均不夠好。在我們實驗室,曾利用蛋白質體學的技術,發現膽道癌病人膽汁中胰臟彈性蛋白酶3B有大量表現。胰臟彈性蛋白酶(PE)是一種內胜肽酶分子量為29 KDa,是屬於絲胺酸蛋白酶的家族成員之一,可水解許多細胞外的基質,例如不可溶彈性蛋白、纖維蛋白、醣蛋白以及血色素。然而近年來有研究指出,PE可誘發黏液大量分泌及在發炎所造成的組織傷害中扮演重要的角色。但目前對於PE大部份的生物特性並不十分清楚。因此本研究將探討PE在正常和癌化的人組織、癌化細胞株及膽道疾病病人膽汁的分佈,發展測定膽汁PE活性的方法,探討其臨床應用性;並進一步確效PE在惡性膽道疾病所扮演的角色。組織萃取液分別利用定量聚合酶儀及西方墨點法測定mRNA及蛋白質的表現量。膽道阻塞的病人利用膽道引流術抽出膽汁。這些病人的診斷包括膽結石(n=29)、膽道癌(n=22)及胰臟癌(n=23)。利用分子模版轉印聚合物去除膽汁干擾物,再利用合成受質測定PE的活性。在TFK-1細胞株加入PE,並利用ELISA測定TNF-α的表現。結果顯示在人類肝癌細胞株Huh7、Hep3B、HepG2和人類膽道癌細胞株TFK-1及膽道癌病人有癌化的肝臟中皆有ELA3B mRNA和蛋白質的表現。膽汁中PE蛋白質表現的陽性率,在惡性膽道疾病族群比膽結石族群較高(46% vs 11%;chi-square,p<0.005)。若分析膽道癌族群膽汁中PE蛋白質表現陽性率則更加明顯(63%)與膽結石族群相比較(p<0.0005)。利用膽紅素特異的分子模版轉印聚合物前處理膽汁後,再進行PE活性的測定,此分析方法之再現性(CV<7.3%),平均回收率92% (範圍, 86%~103%)。惡性膽道疾病病人膽汁之PE活性較良性膽道疾病者高(16.2 U/L vs. 6.4 U/L, p<0.01)。為了排除胰液逆流至膽汁造成PE活性的上升,利用膽汁澱粉酶的測定。結果顯示,膽汁內PE/amylase比值在惡性膽道疾病族群 (0.228 ± 0.043)較膽結石族群(0.027 ± 0.006)更為顯著高(p<0.0001)。在ROC曲線圖下的面積,PE/amylase比值(決定值0.065)在診斷惡性膽道疾病正確性為0.874,靈敏度78.6%和特異性86.2%。添加PE於TFK-1細胞株3小時即可顯著誘發TNF-α表現。總結來說,本研究指出PE在惡性疾病有較高的表現及在膽道疾病病程中扮演重要的角色。測定膽汁PE/amylase比值可做為鑑別診斷膽道阻塞的生物標誌。

    It is very difficult to differentiate benign from malignant cause of biliary obstruction. Many tumor markers in bile have been reported attemping to help diagnose malignancy biliary tract diseases. However, none of these markers exert satisfactory sensitivity and specificity. Previous study in our laboratory, using proteomics approach for a global analysis of human bile, found that pancreatic elastase 3B was highly expressed in patients with malignancy. Pancreatic elastase (PE), a 29 KDa endopeptidase, is a family of serine protease, which degrades extracellular matrix components, such as insoluble elastin, fibronectin, proteoglycan, and hemoglobin. Recent studies indicate that PE induces hypersecretion of mucin and plays an important role in inflammatory-mediated tissue injury. Nevertheless, most of biological properties of PE remain uncleared. The aim of this study is to determine the distribution of PE in normal and malignant tissues, cell lines, and bile from patients with biliary obstruction, to establish and validate an assay for the measurement of PE activity in bile and its clinical application, and to characterize the role of PE in the biliary malignancy. Levels of mRNA and protein expression were determined by real-time PCR and western blotting, respectively. Bile samples were collected from patients with bile duct obstruction on the day of biliary drainage. The etiology of biliary obstruction includes gallstone (n=29), cholangiocarcinoma (n=22), and pancreatic cancer (n=23). A bilirubin-specific molecularly imprinted polymer (MIP) was used as a bioseparator to extract bile proteins for the determination of PE activity. PE was added in TFK-1 cell cultures and evaluated its TNF-α expression by ELISA. The results showed that the expression of ELA3B mRNA is up-regulated in Huh7, Hep3B, HepG2, and TFK-1 cell lines, and in the tumor part of liver from patients with cholangiocarcinoma. PE protein expression was also observed in Huh7, Hep3B, HepG2, and TFK-1 cell lines. The positive rate for PE protein detected by western blotting was increased in bile samples from patients with biliary malignancy, compared to those with gallstone(46% vs 11%, chi-square, p<0.005). The positive rate for PE protein expression in the bile was much higher in patients with cholangiocarcinoma, than those patients with gallstone(63% vs 11%,p<0.0005). After pretreatment with MIP, PE assay of bile has an average recovery of 92% ( range, 86%103%) and the CV<7.3%. The activities of PE in bile were significantly higher in patients with biliary malignancy (16.2 U/L vs. 6.4 U/L, p<0.01). Using biliary amylase to exclude the existence of pancreaticobiliary reflux, the ratio of biliary PE to amylase was markedly elevated in patients with malignancies (0.228 ± 0.043), compared to those with gallstone (0.027 ± 0.006, p<0.0001). The area under the ROC curve of biliary PE/amylase for the diagnosis of malignant obstruction was 0.874, using a cutoff value of 0.065. The sensitivity and the specificity for biliary PE/amylase ratio were 78.6% and 86.2%, respectively. Treatment of TFK-1 cells with PE resulted in an increased level of TNF-α. PE-induced TNF-α secretion in TFK-1 cell line reached its peak at 3hrs (p<0.0001). In conclusion, our data indicate that the expression of PE was higher in malignancy and may play a role in the pathogenesis of biliary malignancy. Biliary PE/amylase ratio could be a useful marker in the differential diagnosis of biliary obstruction.

    Abstract (in Chinese)…..……………………………………………………I Abstract (in English)…………………………………………………………III Acknowledgments…………………………………………………………………V Contents……………………………………………………………………………VI Table List.….………………………………………………………………………VIII Figure List…..……………………………………………………………………IX Appendix List...………………………………………………………………X Introduction………………………………………………………………………1 Biliary Obstruction Disease………………………………………………………1 Gallstones………………………………………1 Cholangiocarcinoma………………………………………………………………2 Pancreatic Cancer…………………………………………………………………3 Inflammation and Biliary Obstruction……………………………………………4 Diagnosis in Biliary Obstruction………………………………4 Proteomic Analysis of Bile…………………………………………………………5 Pancreatic Elastase………………………………………………………………6 Pancreatic Elastase and Inflammation……………………………………………7 Pancreatic Elastase and Cancer…………………………………………………8 Aims and Strategies………………………………………………………………10 Materials and Methods…………………………………………………………11 1.Preparation of ELA3B cDNA………………………………………………11 2.Construction of ELA3B standard curves by real-time PCR…………………14 3.Determination of liver ELA3B mRNA by real-time PCR…………………15 4.Cell culture………………………………………………………………15 5.Determination of cell lines ELA3B mRNA by real-time PCR……………16 6.Total protein analysis………………………………………………………17 7.Determination of cell lines PE 3B/PE protein expression by western blot western blot expression …………………………17 8.Collection of human bile…21 9.Removal of interferences in bile…21 10.Determination of pancreatic elastase activity…22 11.Determination of biliary PE 3B/PE protein expression by western blot..24 12.Determination of biliary amylase activity…………………………………25 13.Receiver Operating characteristic (ROC) curve of biliary PE/amylase for the diagnosis of malignant obstruction……………………………………25 14.Measurement of TNF-α secretion by ELISA………………………………25 15.Statistical Analysis ……………………………………………27 Results……………………………………………………………………………28 Discussion……………………………………………………………………32 Conclusion…………………………………………………………………………36 References……………………………………………………………………37 Tables………………………………………………………………………………46 Figures……………………………………………………………………………50 Appendixes…………………………………………………………………………65

    1.Kim YT. Digestive Endoscopy 2006, 18: 154-156.
    2.Gilloteaux J. Introduction to the biliary tract, the gallbladder and gallstones. Micro Res Tech 1997; 38: 547-551.
    3.Rescorla FJ. Cholelithiasis, cholecystitis, and common bile duct stones. Curr Opin Pediatr 1997; 9: 276-282.
    4.Carey M. Pathogenesis of gallstones. Am J Surg 1993; 165: 410.
    5.Trotman B. Pigment gallstone disease. Gastoenterol Clin North Am 1991; 20:111.
    6.Anderson CD, Pinson CW, Berlin J, Chari RS. Diagnosis and treatment of cholangiocarcinoma. Oncologist 2004; 9: 43-57. Review.
    7.Chapman RW. Risk factors for biliary tract carcinogenesis. Annals of Oncology 1999; 10 Supp 4: S308-S311.
    8.Pitt HA, Dooley WC, Yeo CJ rt al. Malignancies of the biliary tree. Curr Probl Surg 1995; 32: 382-385.
    9.Sirica AE. Cholangiocarcinoma: molecular targeting strategies for chemoprevention and therapy. Hepatology 2005; 41: 5-15. Review.
    10.Broome U, Olsson R, Loof L, Bodemar G, Danielsson A, et al. Natural histology and prognostic factors in 305 Swedish patients with primary sclerosing cholangitis. Gut 1996; 38: 610-615.
    11.Broome U, Lofberg R, Veress B, Eriksson LS. Primary scleroing cholangitis and ilcerative colitis: evidence for increased neoplastic potential. Hepatology 1995; 22: 1404-1408.
    12.Farges O, Malassagne B, Sebagh M, Bismuth H, Primary scleroing cholangitis: liver transplantation of biliary surgery. Surgery 1995; 117: 146-155.
    13.Schrumpf E, Abdelnoor M, Fausa O, Elgjo K, Jenssen E, Kolmannskog F. Risk factors in primary scleroing cholangitis. J Hepatol 1994; 21: 1061-1066.
    14.Bergquist A, Ekbom A, Olsson R, Kornfeldt D, Loof L, Danielsson A, et al. Hepatic and extrahepatic malignancies in primary scleroing cholangitis. J Hepatol 2002; 36: 321-327.
    15.Foutch PG. Diagnosis of cancer by cytologic methods performed during ERCP. Gastrointest Endosc 1994; 40: 249-252.
    16.Savader SJ, Prescott CA, Lund GB, et al. Intraductal biliary biopsy: comparison of three techniques. J Vasc Interv Radiol 1996; 7: 743-750.
    17.Ponchon T, Gagnon P, Berger F, et al. Value of endobiliary brush cytology and biopsies for the diagnosis of malignant bile duct stenosis: results of a prospective study. Gastrointest Endosc 1995; 42: 565-572.
    18.Sherlock S, Dooley J. Gallstones and inflammatory gallbladder diseases. in: Sherlock S, Dooley J. eds. Diseases of the liver and biliary system. 10th edn. Oxford: Blackwell Science Ltd, 1997: 615.
    19.Department of health (eds.). Average life tables of Taiwan-Fuchien area, The Republic of China, 1995, Department of Health, Taipei, 1997, pp 98-102.
    20.Tempia-Caliera AA, Horvath LZ, Buchler MW, et al. Adhesion molecules in human pancreatic cancer. Journal of Surgical Oncology 2002; 79: 93-100.
    21.Yeo CJ, Cameron JL. Improving results of pancreaticoduodenectomy for pancreatic cancer. World J Surg 1999; 23: 907-912.
    22.Solcia E, Kioppel G, Sobin L. Histological typing of endocrine tumors. 2nd ed. New York: Springer-Verlag 2000.
    23.Anne C, Jiangting HU, Graham S, Francesco P, et al. Identification of potential therapeutic tagets by gene-expression profiling in pancreatic endocrine tumors. Gastroenterology 2006; 131: 1597-1610.
    24.Warshaw AL, Swanson RS. Pancreatic cancer in 1988: possibilities and probabilities. Ann Surg 1988; 208: 541-543.
    25.Warshaw AL, Frenandez-del CO. Pancreatic carcinoma. N Eng J Med 1992; 326: 455-65.
    26.Connolly MM, Dawson PJ, Michelassi F, Moossa AR, Lowenstein F. Survival in 1001 patients with carcinoma of the pancreas. Ann Surg 1987; 206: 366-73.
    27.Friess H, Buchler M, Kruger M, et al. Treatment of duct carcinoma of the pancreas with the LH-RH analogue buserelin. Pancreas 1992; 7: 516-521.
    28.Varki NM, Viswanathan B, Vu T. Endothelial cells enhance spontaneous metastasis of human lung carcinoma cells in athymic mice. Cancer Lett 1990; 51: 251-257.
    29.Swain MG, Appleyard CB, Wallace JL, Maric M. TNF-α facilitates inflammation-induced glucocorticoid secretion in rats with biliary obstruction. Journal of Hepatology 1997; 26: 361-368.
    30.Bemelman MHA, Gouma DJ, Greve JW, Buurman WA. Cytokines tumour necrosis factor and interleukin-6 in experimental biliary obstruction in mice. Hepatology 1992; 15: 1132-1136.
    31.Clements B, Halliday I, Irwin P, McCaigue M, Rowlands BJ. Decreased kupffer cell clearance capacity (KCCC) contributes to endotoxemia seen in cholestasis. Gut 1991; 33: W78.
    32.Greve JW, Maessen JG, Tiebosch T, Buurman WA, Gouma DJ. Prevention of postoperative complication in jaundiced rats. Ann Surg 1990; 212: 221-227.
    33.Tilg H, Wilmer A, Vogel W, Herold M, Nolchen B, Judmaier B, Huber C. Serum levels of cytokines in chronic liver diseases. Gastroenterology 1992; 103: 264-274.
    34.Wardle EN, Wright NA. Endotoxin and acute renal failure associated with obstructive jaundice. Br Med J 1970; 4: 472-474.
    35.Beutler B, Cerami A. Tumor necrosis, cachexia, shock and inflammation: Acommon mediator. Ann Rev Biochem 1988; 57: 505-518.
    36.Van Der Poll T, Sauerwein HP. Tumour necrosis factor-alpha: Its role in the metabolic response to sepsis. Clin Sci 1993; 84: 247-256.
    37.Ohtsuka M, Miyazaki M, Kondo Y, Nakajima N. Neutrophil-mediated sinusoidal endothelial cell injury after extensive hepatectomy in cholestatic rats. Hepatology 1997; 25: 636-641.
    38.Levy R, Schlaeffer F, Keynan A, Nagauker O, Yaari A, Sikuler E. Increased neutrophil function induced by bile duct ligation in a rat model. Hepatology 1993; 17: 908-914.
    39.Dillon P, Belchis D, Tracy T, Cilley R, Hafer L, Krummel T. Increased expression of intercellular adhesion molecules in biliary atresia. Am J Pathol 1994; 145: 263-267.
    40.Polzien F, Ramadori G. Increased intercellular adhesion molecule-1 serum concentrations in cholestasis. J Hepatol 1996; 25: 877-886.
    41.Chen CY, Shiesh SC, Tsao HC, Lin XZ. The assessment of biliary CA 125, CA19-9 and CEA in diagnosing cholangiocarcinoma- the influence of sampling time and hepatolithiasis. Hepatogastroenterology 2002; 49: 616-620.
    42.Akdogan M, Parlak E, Kayhan B, Malk M, Ersavasti G, Sahin B. Are serum and biliary carcinoembryonic antigen and carbohrdrate antigen 19-9 determinations reliable for differentiation between benign and malignant biliary disease? Turk J Gastroenterol 2003; 14: 181-184.
    43.Nichols JC, Gores GJ, LaRusso NF, Wiesner RH, Nagorney DM, Ritts RE. Diagnostic role of serum CA 19-9 for cholangiocarcinoma in patients with primary sclerosing cholangitis. Mayo Clin Proc 1993; 68: 874-879.
    44.Patel AH, Harnois DM, Klee GG, LaRusso NF, Gores GJ. The utility of CA19-9 in the diagnoses of cholangiocarcinoma in patients without primary sclerosing cholangitis. Am J Gastroenterol 2000; 95: 204-207.
    45.Malhi H, Gores GJ. The modern diagnosis and therapy of cholangiocarcinoma. Aliment Pharmacol Ther 2006; 23: 1287-1296. Review.
    46.Brockmann JG, Hernandez CA, Emparan C, et al. Trypsinogen activation peptide expression in gallbladder bile identifies biliopancreatic carcinoma. Anticancer Res 2003; 23(2A): 819-825.
    47.Chen CY, Shiesh SC, Tsao HC, Lin XZ. The value of biliary fibronectin for diagnosis of cholangiocarcinoma. Hepatogastroenterology 2003; 50: 924-927.
    48.Chen CY, Shiesh SC, Wu SJ. Rapid detection of K-ras gene mutations in bile by peptide nucleic acid-mediated PCR clamping and melting curve analysis-comparison with RELP method. Clin Chem 2004; 50: 481-489.
    49.Chen CY, Lin XZ, Wu HC, Shiesh SC. The value of biliary amylase and hepatocarcinoma-intestine-pancreas/pancreatitis-associated protein І (HIP/PIP-І) in diagnosing biliary malignancies. Clin Biochem 2005; 38: 520-525.
    50.Guibaud L, Bret PM, Reinhold C, Atri M, Bakun AN. Bile duct obstruction and choledocholithiasis: diagnosis with MR cholangiography. Radiology 1995; 197: 109-115.
    51.Prytz H, Keiding S, Bjornsson E, Munk OL, et al. Dynamic FDG-PET is useful for detection of cholangiocarcinoma in patients with PSC listed for liver transplantation. Hepatology 2006; 44: 1572-1580.
    52.Groen PC, Gores GJ, LaRusso NF, Gunderson LL, Nagorney DM. Biliary tract cancers. N Eng J Med 1999; 28:1368-1378.
    53.Danzinger R, Hofmann A, Schoenfield L. Dissolution of cholesterol gallstones by chenodeoxycholic acid. N Eng J Med 1972; 286:1.
    54.Makino I, Shinozaki K, Yashino K. Dissolution of cholesterol gallstones by ursodeoxycholic acid. Jpn J Gastroenterol 1975; 72: 690.
    55.Sanz-Altamira PM, Ferrante K, Jenkins RL, Lewis WD, Huberman MS, Stuart KE. A phase II trial of 5-fluoroural, leucovorin, and carboplatin in patients with unresectable biliary tree carcinoma. Cancer 1998; 82: 2321-2325.
    56.Nakeeb A, Pitt HA, Sohn TA, et al. Cholangiocarcinoma: a spectrum of intrahepatic, perihilar, and distal tumors. Ann Surg 1996; 224: 463-475.
    57.Henson DE, Albores-Saavedra J, Corle D. Carcinoma of the gallbladder: histologic types, stage of disease, grade, and survival rates. Cancer 1992; 70: 1493-1497.
    58.Idem. Carcinoma of the extrahepatic bile ducts: histologic types, stage of disease, grade, and survival rates. Cancer 1992; 70: 1498-1501.
    59.Farley DR, Weaver AL, Nagorney DM. “Natural histology” of unresected cholangiocarcinoma: patient outcome after noncurative intervention. Mayo Clin Proc 1995; 70: 425-429.
    60.Pitt HA, Dooley WC, Yeo CJ, Cameron JL. Malignancies of the biliary tree. Curr Probl Surg 1995; 32: 1-90.
    61.Prat F, Chapat O, Ducot B, er al. Predictive factors for survival of patients with inoperable malignant distal biliary structures: a practical management guideline. Gut 1998; 42: 76-80.
    62.Schima W, Prokesch R, Osterreicher C, et al. Biliary wallstent endoprosthesis in malignant hilar obstruction: long-term results with regard to the type of obstruction. Clin Radiol 1997; 52: 213-219.
    63.Chen G, Gharib TG, Huang CC, Beer DG, et al. Proteomic analysis of lung adenocarcinoma: Identification of a highly expresses set of protetins in tumors. Clin Cancer Res 2002; 9: 2298-2305.
    64.Jones MB, Krutzsch H, Shu H, Zhao Y, Liotta LA, Kohn EC, Petricoin EF. Proteomic analysis and identification of new biomarkers and therapeutic targets for invasive ovarian cancer. Proteomics 2002; 2: 76-84.
    65.Park KS, Kim H, Kim NG, Cho SY, Choi KH, Seong JK, Paik YK. Proteomic analysis and molecular characterization of tissue ferritin light chain in hepatocellular carcinoma. Hepatology 2002; 35: 1459-1466.
    66.Luftner D, Possinger K. Nuclear matrix proteins as biomarkers for breast cancer. Expert Rev Mol Diag 2002; 2: 23-31.
    67.Li J, Zhang Z, Rosenzweig J, Wang YY, Chan DW. Proteomics and bioinformatics approaches for identification of serum biomarkers to detect breast cancer. Clinical Chemistry 2002; 48: 1296-1304.
    68.Sauter ER, Zhu W, Fan XJ, Wassell RP, Chervoneva I, Du Bios GC. Proteomic analysis of nipple aspirates fluid to detect biologic markers of breast cancer. Brit J Cancer 2002; 86: 1440-1443.
    69.Hartley BS, Shotton DM. Pancreatic elastase, in: The enzymes (ed. Boyer, P.D.) 3th edition. 1971; 3: 323-373.
    70.Geiger R. Pancreatic elastase, in: Methods of enzymatic analysis (ed. Bergmeyer, H.U.) 3th edition. 1984; 5: 170-176.
    71.MacDonald RJ, et al. Primary structure of two distinct rat preproelastase determined by sequence analysis of the complete cloned messenger ribonucleic acid sequences. Biochemical 1982; 21: 1453-1463.
    72.Gertler A, Birk Y. Isolation and characterization of porcine proelastase. Eur J Biochem 1970; 12: 170-176.
    73.Rinderknecht H, Geokas MC, Silverman P, Haverback BJ. Determination of elastolytic activity in blood of normal subjects and patients with acute pancreatitis. Clin Chim Acta 1968; 19: 89-95.
    74.Largman C, Brodrick JW, Geokas MC. Purification and characterization of two human pancreatic elastases. Biochemistry 1976; 15: 2491-2500.
    75.Kawashima I, Tani T, Shimoda K, Takiguchi Y. Chracterization of pancreatic elastase ІІ cDNAs: two elastase ІІ mRNAs are expressed in human pancreas. DNA 1987; 6: 163-172.
    76.Fouret P, du Bois RM, Bernaudin JF, Takahashi H, Ferrans VJ, Crystal RG. Expression of the neutrophil elastase gene during human bone marrow cell differentiation. J Exp Med 1989; 169: 833-845.
    77.Tani T, Ohsumi J, Mita K, Takiguchi Y. Identification of a novel class of elastase isozyme, human pancreatic elastase III, by cDNA and genomic gene cloning. J Biol Chem 1988; 263: 1231-1239.
    78.Terada M, Kelly EA, Jarjour NN. Increased thrombin activity after allergen challenge: a potential link to airway remodelling? Am J Respir Crit Care Med 2004; 169: 373-377.
    79.Swysyum VA, Gordon JR, Davis EB, Zhang X, Cockcroft DW. Mast cell tryptase release and asthmatic response to allergen increase with regular use of salbutamol. J Allergy Clin Immunol 2000; 106: 57-64.
    80.Tonnel AB, Gosset P, Tillie-Leblond I. Characteristics of the inflammatory response in bronchial lavage fluids from patients with status asthmaticus. Int Arch Allergy Immunol 2001; 124: 267-271.
    81.Haiyan W, Yanshan Z, Shaoheng H. Induction of release and up-regulated gene expression of interleukin (IL)-8 in A549 cells by serine proteinases. BMC Cell Biology 2006; 7: 22.
    82.Asokananthan N, Graham PT, Fink J, Stewart GA, et al. Activation of protease-activated receptor (PAR)-1, PAR-2, and PAR-4 stimulates IL-6, IL-8, and prostaglandin E2 release from human respiratory epithelial cells. J Immunol 2002; 168: 3577-3585.
    83.Uehara A, Muramoto K, Takada H, Sugawara S. Neutrophil serine proteinases activate human noneoithelial cells to produce inflammatory cytokines through protease-activated receptor 2. J Immunol 2003; 170: 5690-5696.
    84.Jin-Ah P, Fang H, Linda DM, Yuehua L, Brian NC, Kenneth BA. Human neutrophil elastase induces hypersecretion of mucin from well-differentiated human bronchial epithelial cells in vitro via a protein kinase C-mediated mechanism. Am J Pathol 2005; 167: 651-661.
    85.Jaffray C, Yang J, Carter G, Mendez C, Norman J. Pancreatic elastase activates pulmonary nuclear factor kappa B and inhibitory kappa B, mimicking pancreatitis-associated adult respiratory distress syndrome. Surgery 2000; 128: 225-231.
    86.Jaffray C, Mendez C, Denham W, Carter G, Norman J. Specific pancreatic enzymes activate macrophages to produce tumor necrosis factor-alpha: role of nuclear factor kappa B and inhibitory kappa B proteins. J Gastrointest Surg 2000; 4: 370-378.
    87.Johnson GB, Brunn GJ, Platt JL. Cutting edge: an endogenous pathway to systemic inflammatory response syndrome (SIRS)-like reactions through toll-like receptor 4. J Immunol 2004; 172: 20-24.
    88.Hietaranta A, Mustonen H, Puolakkainen P, Haapiainen R, Kemppainen Esko. Proinflammatory effects of pancreatic elastase are mediated through TLR4 and NF –kB. Biochem Biophy Res Comm 2004; 323: 192-196.
    89.Murr MM, Yang F, Adam Fier BA, Kaylor P, Mastorides S, Norman FG. Pancreatic elastase induces liver injury by activating cytokine production within kupffer cells via nuclear factor-kappa B. J Gastrointest Surg 2002; 6: 474-480.
    90.Denham W, Yang J, Norman J. Evidence for an unknown component of pancreatic ascites which induces ARDS through an IL-1 and TNF dependent mechanism. Surgery 1997; 122: 295-303.
    91.Fujita M, Masumune A, Satoh A, Koizumi M, Shimosegawa T, Toyota T. Role of ascetic fluids in the pathogenesis of acute pancreatitis [abstract]. Gastroenterology 1999; 116: A1125.
    92.Shinohara T, Kaneko T, Nagashima Y, Ueda A, Tagawa A, Ishigatsubo Y. Adenovirus-mediated transfer and overexpression of heme oxygenase-1 cDNA in lungs attenuates elastase-induced pulmonary emphysema in mice. Hum Gene Ther 2005; 16: 318-327.
    93.Naruse S, Ishiguro H, Ko SB, Yoshikawa T, et al. Fecal pancreatic elastase: a reproducible marker for severe exocrine pancreatic insufficiency. J Gastroenterol 2006; 41: 901-908.
    94.McDonald JA, Kelly DG. Degradation of fibronectin by human leukocyte elastase: release of biologically active fragments. J Biol Chem 1980; 225: 8848-8858.
    95.Mignatti P, Robbin E, Rifkin DB. Tumor invasion through the human amniotic membrane: requirement for a proteinase cascade. Cell 1986; 47: 487-498.
    96.Nakajima M, Chop AM. Tumor invasion and extracellular matrix degradative enzymes: regulation of activity by organ factors. Semin Cancer Biol 1991; 2: 115-127.
    97.Dong WU, Jia MQ, Rui XD, Wei JJ, Yuan JC, Xiao HL, Xing HL. Evaluating the role of serum elastase 1 in the dianosis of pancreatic cancer. Chin J Dige Dis 2006; 7: 117-120.
    98.Yamashita J, Ogawa M, Ikei S, Omachi H, Sato H, et al. Production of immunoreactive polymorphonuclear leukocyte elastase in human breast cancers: possible role of polymorphonuclear leukocyte elastase in the progression of human breast cancer. Br J Cancer 1994; 69: 72.
    99.Yamashita J, Ogawa M, Sakai K. Prognostic significance of three novel biological factors in a clinical trial of adjuvant therapy for node-negative breast cancer. Surgery 1995; 117: 601.
    100. Yamashita J, Ogawa M, Abe M, Hayashi N, Kurusu Y, Kawahara K, Shirakusa. Tumor neutrophil elastase is closely associated with the direct extension of non-small cell lung cancer into the aorta. Chest 1997; 111: 885.
    101.Inada M, Yamashita J, Ogawa M. Neutrophil elastase inhibitor (ONO-5046-Na) inhibits the growth of human lung cancer cell lines transplanted into severe combined immunodeficiency (SCID) mice. Res Commun Mol Path Pharmacol 1997; 97: 229.
    102.Matsumura F, Yamaguchi Y, Ogawa M. Adhesion molecule expression in vascular endothelial cells incubated with cancer cell line supernatant are inhibited by neutrophil elastase inhibitor (ONO-5046-Na). Res Commun Mol Path Pharmacol 1997; 98: 109.
    103.Kamohara H, Sakamoto K, Mita S, An XX, Ogawa M. Neutrophil elastase inhibitor (ONO-5046-Na) suppresses the proliferation, motility and chemotaxis of a pancreatic cancer cell line, CAPAN-1. Res Commun Mol Path Pharmacol 1997; 98: 103.
    104.Fumiaki N, Masahiko H, Akihiro O, Michio O, et al. Elastase activity enhances the adhesion of neutrophil and cancer cells to vascular endothelial cells. J Surg Res 2000; 94: 153-158.
    105.Yoshiyuki W, Kazuhiro Y, Jun H, Hirozumi M, et al. Sivelestat, a specific neutrophil elastase inhibitor, suppresses the growth of gastric carcinoma cells by preventing the release of transforming growth factor-α. Cancer Sci 2006; 97: 1037-1043.
    106.Shimada S, Yamaguchi K, Takahashi M, Ogawa M. Pancreatic elastase IIIA and its variants are expressed in pancreatic carcinoma cells. Inter J Mol Med 2002; 10: 599-603.
    107.Krechler T, Kocna P, Vanickova Z, Svestka T, Lukas M, Dosedel J, Kohout P, Zak A. Faecal elastase I-its use in diagnosis of chronic pancreatitis. Casopis Lekaru Ceskych 2006; 145: 480-483.
    108.Daftary A, Acton J, Heubi J, Amin R. Fecal elastase-1: utility in pancreatic function in cystic fibrosis. Journal of Cystic Fibrosis 2006; 5: 71-76.
    109.Charneau J, Douay O, Daver A, Boyer J. Assay of serum elastase 1 in adenocarcinoma of the pancreas: diagnosis value, compared and combined study with serum CEA and CA 199. Gastroenterologie Clinique et Biologique 1988; 12: 548-552.
    110.Iwase K, Miyata M, Yamaguchi T, Kawaguchi T, Tanaka Y, Matsuda H. Pancreatic ductal cell carcinoma producing pancreatic elastase 1. Journal of Surgical Oncology 1993; 54: 199-202.
    111.Zeydel M, Nakagawa S, Biempica L, Takahashi S. Collagenase and elastase production by mouse mammary adenocarcinoma primary cultures and cloned cells. Cancer Research 1986; 46: 6438-6445.
    112.Ogawa M, Kosaki G, Tanaka S, Iwaki K, Nomoto M. An activity of hydrolyzing elastase substrate succinyltrialanine p-nitroanilide in human bile. Clin Chim Acta 1979; 93: 235-238.
    113.Sugiyama M, Atomi Y. Periampullary diverticula cause pancreaticobiliary reflux. Scand J Gastroenterol 2001; 36: 994-997.
    114.Uetsuji S, Okuda Y, Kwon AH, et al. Gallbladder cancer with a low junction of the cystic duct or an anomalous pancreaticobiliary junction. Eur J Gastroenterol Hepatol 1996; 8: 1213-1217.
    115.Imazu M, Iwai N, Tokiwa K, Shimotake T, Kimura O, Ono S. Factors of biliary carcinogenesis in cholesterol cysts. Eur J Pediator Surg 2001; 11: 24-27.
    116.Sai JK, Suyama M, Kubokawa Y, et al. Occult pancreaticobiliary reflux in patients with a normal pancreaticobiliary junction. Gastrointest Endosc 2003; 57: 364-368.
    117.Grant AJ, Lerro KA, Wu CW. Cell associated elastase activities of rat mammary tumour cells. Biochemistry International 1990; 22: 1077-1084.
    118.Chubinskaia SG. Elastase activity during growth and metastasis of tumors and the pharmacological effects in C57B1/6 mice. Eksperimentalnaia Onkologiia 1990; 12: 53-56.
    119.Hanahan D, Weinberg RA. The hallmarks of cancer. Cell 2000; 100: 57-70.

    下載圖示
    2017-01-30公開
    QR CODE