| 研究生: |
林均威 Lin, Chun-Wei |
|---|---|
| 論文名稱: |
受束制之移動最小二乘法在古典板上之應用 Constrained Moving Least Square Method for the Analysis of Classical Plates |
| 指導教授: |
王永明
Wang, Yung-Ming |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 中文 |
| 論文頁數: | 90 |
| 中文關鍵詞: | 移動最小二乘法 、無元素法 、古典板理論 |
| 外文關鍵詞: | Moving Least Square Method, Element-free Method, Theory of classical plates |
| 相關次數: | 點閱:62 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文以受束制之移動最小二乘法分析古典板問題,此方法特點為,在以移動最小二乘法建立局部近似函數同時加入限制條件,使其滿足對應之控制方程式及邊界條件。古典板控制方程式為四階微分方程式,分析此類高階微分方程式問題時,採用Hermite型式之近似法,將函數之殘值及其一階導數之殘值皆納入殘值二次式考慮,使節點上之殘值最小化,得到以節點上函數值及其一階導數表示之近似函數,利用各節點函數值之一致性條件,以置點法建立聯立方程式求解。
數值算例中,分析受各種形式之載重和邊界條件之平板,以本文方法求得其位移、轉角、彎矩、剪力,並與解析解相比較,討論其精度和收斂性。
This thesis presents a constrained moving least square method to solve the problems of the classical plate. The novelty of this approach is that, constraints are added to make the approximate function satisfy the governing equation and boundary conditions while the approximate function is established by the moving least square approach. To analyze the problems of the high order differential equation, such as classic plates, we attempt to reduce the weighted sum of the residuals that results from the approximation to the field variable and its first derivatives. The process leads to an interpolation function which is express in terms of the nodal values of the field variable and its first derivatives. According to the requirement of the consistency of the interpolation function with its value at nodes, the point collocation technique was employed to determine the unknown nodal values, and the approximation solution can thus be found.
Various examples for the plate under different loads and different boundary conditions are solved to examine the accuracy and the rate of convergency of this method.
[1] L. B. Lucy (1977), “A numerical approach to the testing of the fission hypothesis”, The Astronomical Journal, 82, pp.1013-1024.
[2] P. Lancaster & K.Salkauskas (1981), “Surface generated by moving least square methods”, Math Computation, 37, pp.141-158.
[3] L. D. Libersky and A. G. Petschek (1990), Smooth Particle Hydrodynamics with Strength of Materials, ed. H. E. Trease, M. J. Fritts, and W. P. Crowley(Springer Verlag), 248.
[4] B. Nayroles, G. Touzot & P. Villon (1992), “Generalizing the Finite Element Method: Diffuse Approximation and Diffuse Element”, Computational Mechanics, 10, pp.307-318.
[5] T. Belytschko, L. Gu and Y. Y. Lu (1994), “Fracture and crack growth by element-free Galerkin methods”, Modeling and Simulation in Materials Science and Engineering, 2, 519-534.
[6] T. Belytschko & Y. Y. Lu (1995), “Element-free Galerkin methods for static and dynamic fraxture”, International Journal of Structures, 32, 2547-2570.
[7] W. K. Liu, S. Jun & Y. F. Zhang (1995), “Reproducing kernel particle methods”, Int. J. Numerical methods in Engineering, 20, 1081-1106.
[8] J. S. Chen, C.T. Wu & W. K. Liu (1996), “Reproducing kernel particle methods for large deformation analysis of non-linear structures”, Computer methods in Applied Mechanics And Engineering, 139, 315-346.
[9] E.Oñate, S. Idelsohn, O. C. Zienkiewicz, R. L. Taylor and C. Sacoo (1996), “A stabilized finite point method for analysis of fluid mechanics problems”, Computer methods in Applied Mechanics And Engineering, 139, 315-346.
[10] T. Zhu, J. D. Zhang, S. N. Atluri & T. Zhu (1998), “A Meshless Local Boundary Integral Equation (LBIE) Method for Solving Nonlinear Problems”, Computational Mechanics, 22, pp.174-186.
[11] S. N. Atluri, T.Zhu (1998), “A New Meshless Local Pretrov-Galerkin(MLPG) Approach in Computational Mechanics”, Computational Mechanics, 22, pp.117-127.
[12] S. N. Atluri, J. Y. Cho, H. G. Kim (1999), “Analysis of thin beam, using the meshless local Pretrov-Galerkin, with generalized moving least squares interpolations”, Compute Mech, 24, pp.334-347.
[13] 盛若磐(2000),元素釋放法積分法則與權函數之改良,近代工程計算論壇論文集,國立中央大學土木系。
[14] S. Li, W. Hao, W. K. Liu (2000), “Numerical simulations of large deformation of thin shell structures using meshfree methods”, Computational Mechanics, 25, pp.102-116.
[15] 陳美娟,程玉民(2003),改進的移動最小二乘法,力學季刊,24(2),pp.266-272。
[16] Y. Xiong & S. Long (2004), “Local Pretrov-Galerkin Method for a Thin Plate”, Applied Mathematics and Mechanics, pp.210-218.
[17] 黃娟,姚林泉(2007),改進廣義移動最小二乘近似的無網格法,力學季刊,28(3),pp.461-470。
[18] Y. M. Wang, S. M. Chen & C. P. Wu (2010), “A Meshless Collocation Method Based on the Differential Reproducing Kernal Interpolation”, Computational Mechanics, 45, pp.585-606.
[19] S. W. Yang, Y. M. Wang, C. P. Wu & H. T. Hu (2010), “A Meshless Collocation Method Based on the Differential Reproducing Kernal Approximation”, Computer Modeling in Engineering & Sciences, 60, pp.1-39.
[20] S. M. Chen, C. P. Wu & Y. M. Wang (2011), “A Hermite DRK interpolation-based collocation method for the analyses of Bernoulli-Euler beams and Kirchhoff-Love planes”, Computer Modeling in Engineering & Sciences, 60, pp.1-39.
[21] T. Belyschoko, Y. Krongauz, D. Oragn, M. Feleming & P. Krysl (1996), “Meshless methods: An overview and recent developments”, Computer Methods in Applied Mechanics & Engneering, 139, pp.3-47.
[22] P. Krysl & T. Belyschoko (2001), “ESFLIB: A library to compute the element free Galerkin shape functions”, Computer Methods in Applied Mechanics & Engneering, 190, pp.2181-2205.
[23]張祐綱(2010),Hermite type之移動最小二乘法在板、梁分析上之應用,國立成功大學土木工程研究所碩士論文。
[24]陳皇甫(2011),齊次基底移動最小二乘法在平板分析上之應用,國立成功大學土木工程研究所碩士論文。
[25] Szilard Rudolph (2000), Dr.-Ing., PE, Theory and Analysis of Plates – Classical and Numerical Methods.