簡易檢索 / 詳目顯示

研究生: 洪子翔
Hung, Tzu-Hsiang
論文名稱: Zernike多項式在軸對稱光學系統下的初級與次級波前像差研究
Zernike Polynomials Representation of the Primary and Secondary Wavefront Aberrations for Axis-Symmetrical Optical Systems
指導教授: 林昌進
Lin, Psang-Dain
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 68
中文關鍵詞: 波前像差Zernike多項式軸對稱光學系統正交性
外文關鍵詞: Wavefront aberration, Zernike polynomials, Axis-symmetrical optical systems, Orthogonality
相關次數: 點閱:114下載:13
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 像差是光學領域中重要的研究方向之一。目前已有許多發展成熟的像差理論,如:賽德像差理論、Zernike多項式等。本研究室過去已將波前像差函數以泰勒級數展開的形式呈現,並以此為基礎,成功計算出賽德像差係數,且與Zemax軟體數值相當接近,僅有些微誤差。

    本研究旨在將先前以泰勒級數所展開的波前像差多項式轉換成Zernike多項式,並利用本研究室的FORTRAN程式,計算出在軸對稱光學系統中Zernike多項式係數數值。此外,本文也利用Zernike多項式本身的正交特性,搭配數值積分方法、FORTRAN程式與光線追蹤,來計算Zernike多項式的係數數值,並探討分割方法對數值積分的影響,將兩種方法的數值結果與Zemax軟體進行比較,以驗證本文方法之正確性。

    根據最後的結果,本研究兩個方法的數值都與Zemax軟體非常相近,代表本研究的兩個方法都能成功計算出Zernike多項式的係數數值。

    Aberration is one of the important research interests in optical field. So far, there are many well-developed theories for aberration, like Seidel aberration, Zernike polynomials etc. In the past, research in my laboratory has presented the wavefront aberration function in the form of Taylor series expansion. And based on this, we have successfully calculated the coefficient of Seidel aberration which is quite close to the value in Zemax, and only with slight error. The purpose of this study is to convert the wavefront aberration polynomials developed by my laboratory in the past into Zernike polynomials, and use the FORTRAN program to calculate the coefficient of Zernike polynomials in axis-symmetrical optical systems. Furthermore, we also use the orthogonality of Zernike polynomials, with numerical integration methods, FORTRAN program and ray tracing program, to calculate the coefficient of the Zernike polynomials, and discuss the influence of segmentation on numerical integration methods. In the end, we compare the numerical values of this two methods with Zemax. The numerical values of both are close to Zemax, which means that the methods in this study is feasible.

    摘要 i ABSTRACT ii 誌謝 xi 目錄 xii 表目錄 xv 圖目錄 xvi 符號表 xviii 第一章 緒論 1 1-1 研究動機 1 1-2 波前像差 2 1-3 Zernike多項式的數學表示 4 1-4 正交性 8 1-5 文獻回顧 9 1-6 本文架構 11 第二章 Zernike多項式的波前像差係數 12 2-1 直角座標下的光程函數與其獨立變數 12 2-2 光程多項式 13 2-3 光程多項式之座標轉換 15 2-4 總光程與總光程差 22 2-5 本章小結 29 第三章 數值結果驗證 30 3-1 佩茲瓦透鏡(Petzval lens) 30 3-2 佩茲瓦透鏡數值驗證結果 31 3-3 庫克三分離物鏡(Cooke triplet) 33 3-4 庫克三分離物鏡數值驗證結果 34 3-5 本章小結 35 第四章 利用Zernike多項式正交特性計算係數 36 4-1 Zernike多項式係數積分表示式 36 4-2 數值積分 38 4-3 Zernike多項式係數計算 43 4-4 本章方法數值結果 46 4-4-1 佩茲瓦透鏡 47 4-4-2 庫克三分離物鏡 48 4-5 本文方法比較 50 4-5-1 佩茲瓦透鏡 50 4-5-2 庫克三分離物鏡 52 4-6 本章小結 53 第五章 分割方法對數值積分的影響 55 5-1 徑向等分數固定 55 5-1-1 佩茲瓦透鏡(固定徑向) 55 5-1-2 庫克三分離物鏡(固定徑向) 57 5-2 周向等分數固定 59 5-2-1 佩茲瓦透鏡(固定周向) 59 5-2-2 庫克三分離物鏡 (固定周向) 61 5-3 本章小結 62 第六章 結論與未來展望 65 6-1 結論 65 6-2 未來展望 66 參考文獻 67

    [1] D. Malacara, Optical Shop Testing (3rd Edition, Wiley-Interscience, 1980).
    [2] R. Barry Johnson, "A historical perspective on understanding optical aberrations," Proc. SPIE 10263, Lens Design: A Critical Review, 1026303 (1 July 1992).
    [3] René Descartes, Discours de la méthode (1637).
    [4] Isaac Newton, Opticks (1704).
    [5] C. F. Gauss, Dioptrische Untersuchungen (1841).
    [6] Ludwig Seidel, "Zur Dioptrik. Ueber die Entwicklung der Glieder 3ter Ordnung, welche den Weg eines ausserhalb der Ebene der Axe gelegenen Lichtstrahles durch ein System brechender Medien bestimmen, von Herrn Dr. L. Seidel," Astronomische Nachrichten, volume 43, Issue 19, pp. 289-304 (1856).
    [7] F. Zernike, "Beugungstheorie des Schneidenverfahrens und Seiner Verbesserten Form, der Phasenkontrastmethode," Physica 1, pp. 689-704 (1934).
    [8] R. J. Noll, "Zernike polynomials and atmospheric turbulence," J. Opt. Soc. Am. 66, pp. 207-211 (1976).
    [9] J. Wyant and K. Creath, "Basic wavefront aberration theory for optical metrology," Applied Optics and Optical Engineering, Vol. XI, pp. 1-53, R. R. Shannon and J. Wyant Eds. Academic Press, New York, N.Y. (1992).
    [10] Guang-ming Dai and Virendra N. Mahajan, "Zernike annular polynomials and atmospheric turbulence," J. Opt. Soc. Am. A 24, pp. 139-155 (2007).
    [11] P. D. Lin, “Alternative method for computing primary wavefront aberrations using Taylor series expansion of optical path length,” OPTIK - International Journal for Light and Electron Optics, Vol. 248, Article 168134 (2021).
    [12] P. D. Lin, "Determination of Secondary Wavefront Aberrations in Axis-Symmetrical Optical Systems. Applied and Computational Mathematics," Vol. 11, No. 3, pp. 60-68 (2022).
    [13] M. Ossendrijver, Science 351, pp. 482–484 (2016).
    [14] Velleman, Daniel J, “The Generalized Simpson’s Rule,” The American Mathematical Monthly, Vol. 112, no. 4, pp. 342–50, JSTOR (2005).
    [15] Zemax Optical Design Program User’s Manual, Zemax LLC (2011).

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE