| 研究生: |
洪子翔 Hung, Tzu-Hsiang |
|---|---|
| 論文名稱: |
Zernike多項式在軸對稱光學系統下的初級與次級波前像差研究 Zernike Polynomials Representation of the Primary and Secondary Wavefront Aberrations for Axis-Symmetrical Optical Systems |
| 指導教授: |
林昌進
Lin, Psang-Dain |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2022 |
| 畢業學年度: | 110 |
| 語文別: | 中文 |
| 論文頁數: | 68 |
| 中文關鍵詞: | 波前像差 、Zernike多項式 、軸對稱光學系統 、正交性 |
| 外文關鍵詞: | Wavefront aberration, Zernike polynomials, Axis-symmetrical optical systems, Orthogonality |
| 相關次數: | 點閱:114 下載:13 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
像差是光學領域中重要的研究方向之一。目前已有許多發展成熟的像差理論,如:賽德像差理論、Zernike多項式等。本研究室過去已將波前像差函數以泰勒級數展開的形式呈現,並以此為基礎,成功計算出賽德像差係數,且與Zemax軟體數值相當接近,僅有些微誤差。
本研究旨在將先前以泰勒級數所展開的波前像差多項式轉換成Zernike多項式,並利用本研究室的FORTRAN程式,計算出在軸對稱光學系統中Zernike多項式係數數值。此外,本文也利用Zernike多項式本身的正交特性,搭配數值積分方法、FORTRAN程式與光線追蹤,來計算Zernike多項式的係數數值,並探討分割方法對數值積分的影響,將兩種方法的數值結果與Zemax軟體進行比較,以驗證本文方法之正確性。
根據最後的結果,本研究兩個方法的數值都與Zemax軟體非常相近,代表本研究的兩個方法都能成功計算出Zernike多項式的係數數值。
Aberration is one of the important research interests in optical field. So far, there are many well-developed theories for aberration, like Seidel aberration, Zernike polynomials etc. In the past, research in my laboratory has presented the wavefront aberration function in the form of Taylor series expansion. And based on this, we have successfully calculated the coefficient of Seidel aberration which is quite close to the value in Zemax, and only with slight error. The purpose of this study is to convert the wavefront aberration polynomials developed by my laboratory in the past into Zernike polynomials, and use the FORTRAN program to calculate the coefficient of Zernike polynomials in axis-symmetrical optical systems. Furthermore, we also use the orthogonality of Zernike polynomials, with numerical integration methods, FORTRAN program and ray tracing program, to calculate the coefficient of the Zernike polynomials, and discuss the influence of segmentation on numerical integration methods. In the end, we compare the numerical values of this two methods with Zemax. The numerical values of both are close to Zemax, which means that the methods in this study is feasible.
[1] D. Malacara, Optical Shop Testing (3rd Edition, Wiley-Interscience, 1980).
[2] R. Barry Johnson, "A historical perspective on understanding optical aberrations," Proc. SPIE 10263, Lens Design: A Critical Review, 1026303 (1 July 1992).
[3] René Descartes, Discours de la méthode (1637).
[4] Isaac Newton, Opticks (1704).
[5] C. F. Gauss, Dioptrische Untersuchungen (1841).
[6] Ludwig Seidel, "Zur Dioptrik. Ueber die Entwicklung der Glieder 3ter Ordnung, welche den Weg eines ausserhalb der Ebene der Axe gelegenen Lichtstrahles durch ein System brechender Medien bestimmen, von Herrn Dr. L. Seidel," Astronomische Nachrichten, volume 43, Issue 19, pp. 289-304 (1856).
[7] F. Zernike, "Beugungstheorie des Schneidenverfahrens und Seiner Verbesserten Form, der Phasenkontrastmethode," Physica 1, pp. 689-704 (1934).
[8] R. J. Noll, "Zernike polynomials and atmospheric turbulence," J. Opt. Soc. Am. 66, pp. 207-211 (1976).
[9] J. Wyant and K. Creath, "Basic wavefront aberration theory for optical metrology," Applied Optics and Optical Engineering, Vol. XI, pp. 1-53, R. R. Shannon and J. Wyant Eds. Academic Press, New York, N.Y. (1992).
[10] Guang-ming Dai and Virendra N. Mahajan, "Zernike annular polynomials and atmospheric turbulence," J. Opt. Soc. Am. A 24, pp. 139-155 (2007).
[11] P. D. Lin, “Alternative method for computing primary wavefront aberrations using Taylor series expansion of optical path length,” OPTIK - International Journal for Light and Electron Optics, Vol. 248, Article 168134 (2021).
[12] P. D. Lin, "Determination of Secondary Wavefront Aberrations in Axis-Symmetrical Optical Systems. Applied and Computational Mathematics," Vol. 11, No. 3, pp. 60-68 (2022).
[13] M. Ossendrijver, Science 351, pp. 482–484 (2016).
[14] Velleman, Daniel J, “The Generalized Simpson’s Rule,” The American Mathematical Monthly, Vol. 112, no. 4, pp. 342–50, JSTOR (2005).
[15] Zemax Optical Design Program User’s Manual, Zemax LLC (2011).