簡易檢索 / 詳目顯示

研究生: 顏子翔
Yen, Tzu-Hsiang
論文名稱: 應用晶格波茲曼法與場協同理論於不同阻礙物之背向階梯管道熱流分析
Lattice Boltzmann method simulation of different obstacle in the backward-facing step flow with the field synergy principle
指導教授: 楊玉姿
Yang, Yue-Tzu
陳朝光
Chen, Chao-Kuang
學位類別: 博士
Doctor
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 128
中文關鍵詞: 場協同理論熱傳背向階梯流場晶格波茲曼法
外文關鍵詞: Field synergy principle, Heat transfer, Backward-facing step, Lattice Boltzmann method
相關次數: 點閱:118下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文是利用晶格波茲曼法模擬低雷諾數二維穩態不可壓縮的背向階梯流場,模擬介質為空氣,為了確保二維流場的適用性,所模擬的雷諾數最大值為Re=200。並利用場協同理論來證明增加流場的擾動可使得速度場與溫度梯度場之間的協同角減少,進而增加熱傳效率。流場的擾動可經由置放不同幾何形狀的阻礙物而產生,本文考慮了3種不同幾何形狀的阻礙物,分別是寬度為 的矩形阻礙物、不同傾斜角度的雙翅片阻礙物及直徑為 的圓柱形阻礙物,也考慮了圓柱阻礙物在流場中不同位置其增加的流場擾動對熱傳係數的影響。除了圓柱阻礙物被動的產生擾動以外,也模擬了圓柱阻礙物其旋轉效應對熱傳係數的主動影響。
    本文所得到的數值流場和溫度場與已發表的實驗值和數值解相當吻合。使用場協同理論來驗證所得到的數值解,說明透過速度場與溫度梯度場之間的相互配合可使熱傳係數增加,速度場與溫度梯度場之間的協同角越小其協同程度越好,因而得到較佳的熱傳係數。成功的利用簡化熱模型模擬低雷諾數不可壓縮的熱流場,也證明了在晶格波茲曼法領域裡,簡化熱模型是一個準確而簡單的模型。

    This study applies the Lattice Boltzmann Method (LBM) to simulate incompressible steady low Reynolds number backward-facing step flows. In order to restrict the simulations to two-dimensional flows, the investigated Reynolds number range is limited to a maximum value of Re=200. In addition, the field synergy principle is applied to demonstrate that the increased interruption within the fluid reduces the intersection angle between the velocity vector and the temperature gradient. The interruption within the fluid is induced by different type of obstacles: square blockage, double plates aligned at angle to flow direction and cylinder. A cylinder is inserted into the flow and the effects on the heat transfer coefficient of different cylinder positions examined. This study considers both the passive heat transfer effect produced by a stationary cylinder and the active heat transfer effect produced by a rotating cylinder.
    The present results obtained for the velocity and temperature fields are found to be in good agreement with the published experimental and numerical results. Furthermore, the numerical results confirm the relationship between the velocity and temperature gradient predicted by the field synergy principle. The results have shown that inserting obstacle to the flow direction enhances the convective heat transfer as a result of flow interruption and thermal boundary layer compression effects. The simplified thermal model applied in this study is therefore an appropriate LBM thermal model for performing accurate simulations of incompressible thermal fluid flows.

    中文摘要.....................................................I 英文摘要....................................................II 誌謝........................................................IV 目錄........................................................V 圖目錄.....................................................VIII 符號說明...................................................XIV 第一章 緒論..................................................1 1-1研究動機與背景.....................................1 1-2 晶格波茲曼法之文獻回顧.............................4 1-3 背向階梯流場之文獻回顧.............................8 1-4 場協同理論之文獻回顧.............................9 1-5 本文架構..........................................10 第二章 晶格波茲曼法理論和基本模型..........................14 2-1 晶格波茲曼法理論..................................14 2-1-1 晶格氣體細胞自動機與晶格波茲曼法............14 2-1-2 連續波茲曼方程式與晶格波茲曼法..............19 2-2晶格波茲曼BGK方程式之無因次化..................28 2-3晶格波茲曼法D2Q9模型與巨觀方程式................29 2-4全新之熱模型......................................37 2-5簡化之熱模型.....................................41 第三章 場協同理論...........................................47 3-1對流熱傳的物理機制................................47 3-2對流熱傳的場協同原理..............................49 3-3從邊界層(拋物線型)流動推廣至回流(橢圓型)流動......50 第四章 邊界處理與程式驗證...................................54 4-1邊界條件處理......................................54 4-2完全反彈邊界與半反彈邊界..........................56 4-3 Inamuro無滑移邊界...............................57 4-4外插邊界..........................................58 4-5速度與壓力邊界....................................59 4-6曲面邊界..........................................62 4-7簡化之熱模型邊界..................................64 第五章 數值模擬結果與討論...................................76 5-1 程式驗證..........................................76 5-2 背向階梯流場分析..................................79 5-3具矩型阻礙物之背向階梯流場與場協同理論分析........81 5-4具雙翅片阻礙物之背向階梯流場與場協同理論分析......83 5-5具圓柱阻礙物之背向階梯流場與場協同理論分析........85 5-6 圓柱阻礙物不同位置與旋轉效應於背向階梯流場與場協同理 論分析........................................... 86 第六章 結論與未來展望......................................117 6-1 綜合結論.........................................117 6-2 未來研究發展方向與建議...........................119 參考文獻...................................................121 圖目錄 圖 1-1 晶格波茲曼法與傳統數值方法的比較......................12 圖 1-2 背向階梯流場示意圖....................................13 圖 2-1 HHP模型中的二體碰撞..................................44 圖 2-2 FHP模型中的二體碰撞..................................44 圖 2-3 元碰撞與元反碰撞示意圖................................45 圖 2-4 分子剛球模型碰撞示意圖................................45 圖 2-5 D2Q9 晶格速度向量示意圖..............................46 圖 3-1 平板邊界層流動示意圖..................................52 圖 3-2 具內熱源之兩平行板熱傳導示意圖........................52 圖 3-3 二維背向階梯流場示意圖................................53 圖 4-1 D2Q9模型晶格向量示意圖...............................66 圖 4-2 完全反彈邊界於下壁面..................................66 圖 4-3 使用完全反彈邊界模擬Poiseuille flow..................... 67 圖 4-4 半反彈邊界於上壁面................................... 67 圖 4-5 使用完全反彈邊界的實際管道寬度........................68 圖 4-6 使用半反彈邊界模擬Poiseuille flow.......................68 圖 4-7 使用完全反彈邊界模擬Poiseuille flow不同鬆弛時間之效應...69 圖 4-8 使用Inamuro方法模擬Poiseuille flow不同鬆弛時間之效應....69 圖 4-9 D2Q9模型外插邊界晶格區分圖...........................70 圖 4-10 使用外插邊界模擬Poiseuille flow........................70 圖 4-11 使用外插邊界模擬不同晶格時間單位下的Couette flow......71 圖 4-12 位於邊界之晶格示意圖.................................71 圖 4-13 使用壓力與速度邊界模擬Poiseuille flow..................72 圖 4-14 使用壓力與速度邊界模擬不同晶格時間單位下的 Couette flow..........................................72 圖 4-15 不同邊界條件之誤差收斂...............................73 圖 4-16 曲面邊界格點示意圖...................................73 圖 4-17 圓柱間之Couette flow幾何示意圖........................74 圖 4-18 使用外插邊界模擬圓柱間之Couette flow..................74 圖 4-19 多孔質平板流之速度分佈圖.............................75 圖 4-20 多孔質平板流之溫度分佈圖.............................75 圖 5-1 801*61格點分佈........................................91 圖 5-2 流場邊界示意圖........................................91 圖 5-3 雷諾數Re=100不同截面處水平速度分佈圖.................92 圖 5-4 雷諾數Re=100背向階梯流場速度向量分佈圖 (ER=2, Pr=0.7).........................................92 圖 5-5 雷諾數對再接觸點長度之影響............................93 圖 5-6 雷諾數對壁面Nu數分佈之影響 (ER=1.5, Pr=0.7)............93 圖 5-7 無因次溫度分佈圖 (a) Re=10 (b) Re=20 (c) Re=50 (ER=1.5, Pr=0.7); (▲) 再接觸點位置..............................94 圖 5-8 雷諾數對壁面Nu數分佈之影響 (ER=2, Pr=0.7).............95 圖 5-9 無因次溫度分佈圖 (a) Re=35 (b) Re=105 (c) Re=170 (ER=2, Pr=0.7) ...............................................95 圖 5-10 階梯擴張比(ER)對壁面Nu數分佈之影響 (Re=100, Pr=0.7) .......................................96 圖 5-11 無因次溫度分佈圖 (a) ER=2 (b) ER=1.67 (c) ER=1.5 (d) ER=1.25 (Re=105, Pr=0.7) ; (▲) 再接觸點位置....................97 圖 5-12 普朗特數(Pr)對壁面Nu數分佈之影響 (Re=100, ER=2)........................................98 圖 5-13 無因次溫度分佈圖 (a) Pr=1.0 (b) Pr=0.7 (c) Pr=0.4 (ER=2, Re=100) .......................................98 圖 5-14 具矩形阻礙物之背向階梯流場幾何示意圖.................99 圖 5-15 具矩形阻礙物之背向階梯流場速度向量分佈圖 (ER=2, Re=100) .......................................99 圖 5-16 具矩形阻礙物之背向階梯流場雷諾數對壁面Nu數分佈之影響 (ER=2, Pr=0.7) .......................................100 圖 5-17 雷諾數對壁面平均Nu數之影響 (有無矩形阻礙物) .......100 圖 5-18 雷諾數對無因次Int值之影響 (有無矩形阻礙物)..........101 圖 5-19 雷諾數對平均協同角之影響 (有無矩形阻礙物)...........101 圖 5-20 具雙翅片阻礙物之背向階梯流場幾何示意圖..............102 圖 5-21 背向階梯流場速度向量分佈圖 (a) 無阻礙物 (b) 0度雙翅片 (c) 27度雙翅片 (d) 45度雙翅片 (ER=2, Re=170)..............103 圖 5-22 具0度雙翅片之背向階梯流場雷諾數對壁面Nu數分佈之影響 (ER=2, Pr=0.7).......................................104 圖 5-23 具27度雙翅片之背向階梯流場雷諾數對壁面Nu數分佈之影響 (ER=2, Pr=0.7).......................................104 圖 5-24 具45度雙翅片之背向階梯流場雷諾數對壁面Nu數分佈之影響 (ER=2, Pr=0.7).......................................105 圖 5-25 雷諾數對壁面平均Nu數之影響 (有無雙翅片阻礙物)......105 圖 5-26 雷諾數對無因次Int值之影響 (有無雙翅片阻礙物)........106 圖 5-27 雷諾數對平均協同角之影響 (有無雙翅片阻礙物).........106 圖 5-28 具圓柱阻礙物之背向階梯流場幾何示意圖................107 圖 5-29 背向階梯流場速度向量分佈圖 (a) 無阻礙物 (b) 圓柱阻礙物 (ER=2, Re=170)...................................107 圖 5-30 具圓柱阻礙物之背向階梯流場雷諾數對壁面Nu數分佈之影響 (ER=2, Pr=0.7).......................................108 圖 5-31 雷諾數對壁面平均Nu數之影響 (有無圓柱阻礙物)........108 圖 5-32 雷諾數對平均協同角之影響 (有無圓柱阻礙物)...........109 圖 5-33 具不同位置圓柱阻礙物之背向階梯流場幾何示意圖........109 圖 5-34 圓柱位置A之背向階梯流場速度向量分佈圖 (a) 固定不動 (b) 順時針方向旋轉 (c) 逆時針方向旋轉 (ER=2, Re=170).....110 圖 5-35 圓柱位置B之背向階梯流場速度向量分佈圖 (a) 固定不動 (b) 順時針方向旋轉 (c) 逆時針方向旋轉 (ER=2, Re=170).....111 圖 5-36 具圓柱阻礙物之背向階梯流場雷諾數對壁面Nu數分佈之影響 (沿x方向變化).......................................112 圖 5-37 具圓柱阻礙物之背向階梯流場雷諾數對壁面Nu數分佈之影響 (沿y方向變化).......................................112 圖 5-38 具圓柱阻礙物之背向階梯流場雷諾數對壁面平均Nu數之影響 (沿x方向變化).......................................113 圖 5-39 具圓柱阻礙物之背向階梯流場雷諾數對壁面平均Nu數之影響 (沿y方向變化).......................................113 圖 5-40 具圓柱阻礙物位置A之背向階梯流場雷諾數對壁面Nu數分佈之影響 (有無旋轉效應).................................114 圖 5-41 具圓柱阻礙物位置B之背向階梯流場雷諾數對壁面Nu數分佈之影響(有無旋轉效應)..................................114 圖 5-42 具圓柱阻礙物位置A之背向階梯流場雷諾數對壁面平均Nu數之 影響 (有無旋轉效應).................................115 圖 5-43 具圓柱阻礙物位置B之背向階梯流場雷諾數對壁面平均Nu數之 影響 (有無旋轉效應).................................115 圖 5-44 具圓柱阻礙物之背向階梯流場雷諾數對平均協同角之影響 (沿x方向變化).......................................116 圖 5-45 具圓柱阻礙物之背向階梯流場雷諾數對平均協同角之影響 (沿y方向變化).......................................116

    Alexander, F. J., Chen, S. and Sterling, J. D., Lattice Boltzmann Thermodynamics, Phys. Rev. E 47, 2249, 1993.
    Armaly, B. F., Durst, F., Pereira, J. C. F. and Schonung, B., Experimental and Theoretical Investigation of Backward-Facing Step Flow, Journal of Fluid Mechanics 127, 473-496, 1983.
    Aung, W., An Experimental Study of Laminar Heat Transfer downstream of Backstep, ASME J. Heat Transfer 105, 823-829, 1983.
    Bhatnagar, P. L., Gross, E. P. and Krook, M., A Model for Collision Process in Gases. I. Small Amplitude Processes in Charged and Neutral One-Component System, Physical Review 94, 511-521, 1954.
    Chen, H., Chen, S. and Matthaeus, W. H., Recovery of the Navier-Stokes Equation Using a Lattice Boltzmann Method, Phys. Rev. A 45, 5339-5342, 1992.
    Chen, Shiyi, Martinez, Daniel and Mei, Renwei, On Boundary Condition in Lattice Boltzmann Methods, Phys. Fluids 8, 2527, 1996.
    Chen, S. and Doolen, G. D., Lattice Boltzmann Method for Fluid Flows, Annu. Rev. Fluid Mech. 30, 329-364, 1998.
    D’Humieres D. and Lallemand P., Numerical Simulations of Hydrodynamics with Lattice Gas Automata in Two Dimensions, Complex systems 1, 599-632, 1987.
    Filetti, E. G. and Kays, W. M., Heat Transfer in Separated, Reattached, and Redevelopment Regions behind a Double Step at Entrance to a Flat Duct, J. Heat Transfer 88, 131-136, 1967.
    Filippova, O. and Hanel, D., Grid Refinement for Lattice-BGK Models, Journal of Computational Physics 147, 219-228, 1998.
    Frisch, U., Hasslacher, B. and Pomeau, Y., Lattice-Gases Automata for the Navier-Stokes Equation, Phys. Review Lett. 56, 1505-1508, 1986.
    Guo, Z. Y., Li, D. Y. and Wang, B. X., A Novel Concept for Convective Heat Transfer Enhancement, Int. J. Heat Mass Transfer 41, 2221-2225, 1998.
    Guo, Zhaoli, Zheng, Chuguang and Shi, Baochang, An Extrapolation Method for Boundary Conditions in Lattice Boltzmann Method, Physics of fluids 14, 2007-2010, 2002.
    Guo, Zhaoli, Shi, Baochang and Wang, Nengchao, Lattice BGK Model for Incompressible Navier-Stokes Equation, J. Comp. Phys. 165, 288-306, 2000.
    Guo, Z. Y., Tao, W. Q. and Shah, R. K., The Field Synergy (coordination) Principle and its Applications in Enhancing Single Phase Convective Heat Transfer, Int. J. Heat Mass Transfer 48, 1797-1807, 2005.
    Hall, E. J. and Pletcher, R. H., An Application of a Viscous-inviscid Interaction Procedure to Predict Separated Flows with Heat Transfer, J. Heat Transfer 107, 557-563, 1985.
    Hardy, J., Pomeau, Y. and de Pazzis, O., Time Evolution of Two-Dimensional Model System I: Invarient States and Time Correction Functions, J. Math Phys. 14, 1746-1759, 1973.
    He, X., Zou, Qisu, Luo, L. S. and Dembo, Micah, Analytic Solutions of Simple Flows and Analysis of Nonslip Boundary Conditions for the Lattice Boltzmann BGK Model, J. Stat. Phys. 87, 115-136, 1997.
    He, X. and Luo, L. S., Lattice Boltzmann Model for the Incompressible Navier-Stokes Equation, J. Stat. Phys. 88, 927-944, 1997.
    He, X., Luo, L. S. and Dembo M., Some Progress in Lattice Boltzmann Method., Part I. Nonuniform Mesh Grids, J. Comp. Phys. 129, 357-363, 1996.
    He, X., Luo, L. S. and Dembo M., Some Progress in Lattice Boltzmann Method: Reynolds Number Enhancement in Simulations, Physica A 239, 276-285, 1997.
    He, Xiaoyi and Luo, Li-Shi, A Prior Derivation of the Lattice Boltzmann Equation, Physical Review E 55, 6333-6336, 1997.
    He, X., Chen, S. and Doolen, G. D., A Novel Thermal Model for Lattice Boltzmann Method in Incompressible Limit, J. Comp. Phys. 146, 282, 1998.
    Higuera, F. and Jimenez, J., Boltzmann Approach to Lattice Gas Simulations, Europhysics Letter 9, 663-668, 1989.
    Higuera, F., Succi, S. and Benzi, R., Lattics Gas Dynamics with Enhanced Collisions, Europhysics Letter 9, 345-349, 1989.
    Hou, S., Zou, Q., Chen, S., Doolen, G. D., Cogley, A. C., Simulation of Cavity Flow by the Lattice Boltzmann Method, J. Comput. Phys. 118 , 329-347, 1995.
    Inamuro T., Yoshino M. and Ogino F., A Non-slip Boundary Conditions for Lattice Boltzmann Simulations, Phys. Fluids 7, 2928-2930, 1995.
    James, D. Sterling and Chen, S. Y., Stability Analysis of Lattice Boltzmann Methods, J. Comput. Phys. 123 , 196-206, 1996.
    Kondoh, T., Nagano, Y., and Tsuji, T., Computational Study of Laminar Heat Transfer downstream of a Backward-facing Step, Int. J. Heat Mass Transfer 36, 577-591, 1993.
    McNamara, G. and Zanetti, G., Use of the Boltzmann Equation to Simulate Lattice-Gas Automata, Phys. Rev. Letter 61, 2332-2335, 1988.
    Mei, Renwei, Luo, Li-Shi and Shyy, Wei, An Accurate Curved Boundary Treatment in the Lattice Boltzmann Method, Journal of Computational Physics 155, 307-330, 1999.
    Noble, D., Chen, S., Georgiadis J. G. and Bucklus R. O., A Consistent Hydrodynamic Boundary Condition for the Lattice Boltzmann Method, Phys. Fluids 7, 203-209, 1995.
    Noble, D., Georgiadis, J. and Buckius. R., Direct Assessment of Lattice Boltzmann Hydrodynamics and Boundary Conditions for Recirculating Flows, J. Stat. Phys. 81, 17-33, 1995.
    Peng, Y., Shu, C. and Chew, Y. T., Simplified Thermal Lattice Boltzmann Model for Incompressible Thermal Flows, Physical Review E. 68, 026701, 2003.
    Qian, Y. H., d’Humiéres D. and Lallemand P., Lattice BGK Models for Navier-Stokes Equation, Europhys. Lett., 17, 479-484, 1992.
    Shan, X., Simulation of Rayleigh-Benard Convection Using a Lattice Boltzmann Method, Phys. Rev. E 55, 2780, 1997.
    Shu, C., Niu, X. D. and Chew, Y. T., Taylor-series Expansion and Least Squares-based Lattice Boltzmann Method: Two-Dimensional Formulation and its Application, Physical Review E. 65, 036708, 2002.
    Shu, C., Peng, Y. and Chew, Y. T., Simulation of Natural Convection in a Square Cavity by Taylor Series Expansion and Least Square-based Lattice Boltzmann Method, International Journal of Modern Physics C 13, 1399-1414, 2002.
    Skordos, P. A., Initial and Boundary Conditions for the Lattice Boltzmann Method, Phys. Rev. E 48, 4823-4842, 1993.
    Sparrow, E. M. and Kalejs, J. P., Local Convective Transfer Coefficients in a Channel downstream of a Partially Constricted Inlet, Int. J. Heat Transfer 20, 1241-1249, 1977.
    Sparrow, E. M., Kang, S. S. and Chuck, W., Relation between Points of Flow Reattachment and Maximum Heat Transfer for Regions of Flow Separation, Int. J. Heat Transfer 30, 1237-1246, 1987.
    Takaji, Inamuro, Masato, Yoshino and Fumimaru, Ogino, A Non-slip Boundary Condition for Lattice Boltzmann Simulations, Phys. Fluids 7, 2928, 1995.
    Takaji, Inamuro, Masato, Yoshino and Fumimaru, Ogino, Accuracy of the Lattice Boltzmann Method for Small Knudsen Number with Finite Reynolds Number, J. Phys. Fluids 9, 3535-3542, 1997.
    Tao, W. Q., He, Y. L., Wang, Q. W., Qu, Z. G. and Song, F. Q., A Unified Analysis on Enhancing Single Phase Convective Heat Transfer with Field Synergy Principle, Int. J. Heat Mass Transfer 45, 4871-4879, 2002.
    Tao, W. Q., Guo, Z. Y. and Wang, B. X., Field Synergy Principle for Enhancing Convective Heat Transfer-its Extension and Numerical Verifications, Int. J. Heat Mass Transfer 45, 3849-3856, 2002.
    Wang, S., Li, Z. X. and Guo, Z. Y., Novel Concept and Device of Heat Transfer Augmentation, Proceeding of 11th IHTC 5, 405-408, 1998.
    Wang, S., Guo, Z. Y. and Li, Z. X., Heat Transfer Enhancement by Using Metallic Filament Insert in Channel Flow, Int. J. Heat Mass Transfer 44, 1373-1378, 2001.
    Yang, Y. J., Yan, Z. S. and Chen, C. K., Numerical Study of Turbulent Heat Transfer and Flow Characteristics of Hot Flow over a Sudden-expansion with Base Mass Injection, Acta Mechanica 144, 57-69, 2000.
    Ziegler, D., Boundary Conditions for Lattice Boltzmann Simulations, J. Stat. Phys. 71, 1171-1177, 1993.
    Zou, Qisu and He, Xiaoyi, On Pressure and Velocity Boundary Condition for the Lattice Boltzmann BGK Model, Phys. Fluids 9, 1591, 1997.
    Zou, Qisu, Hou, Shuling and Doolen, G. D., Analytical Solutions of the Lattice Boltzmann BGK Model, J. Stat. Phys. 81, 319-334, 1995.
    Zou, Qisu, Hou, Shuling, Chen, Shiyi and Doolen, G. D., An Improved Imcompressible Lattice Boltzmann Model for Time-Independent Flows, J. Stat. Phys. 81, 35-47, 1995.
    Carlo Cercignani, The Boltzmann Equation and its Applications, Springer, 1988.
    Dieter A. Wolf-Gladrow, Lattice-Gas Cellular Automata and Lattice Boltzmann Models, Springer, Germany, 2000.
    Munson B. R., Young D. F. and Okiishi T. H., Fundamentals of Fluid Mechanics, Wiley, New York, 1998.
    Richard L. Liboff, Kinetic Theory: Classical, Quantum, and Relativistic Descriptions, Springer, 2003.
    Sauro Succi, The Lattice Boltzmann Equation for Fluid Dynamics and Beyond, Oxford University press, New York, 2001.
    江孟璋,「應用FDLBM方法在高速進給熱傳系統之研究」,國立中正大學碩士論文,2003。
    郭照立,「模擬不可壓流體流動的格子Boltzmann方法研究」,華中理工大學博士論文,2000。
    張小軍,「格子法理論及其在計算流體力學中的應用研究」,武漢理工大學博士論文,2003。
    楊志強,「以晶格波茲曼法模擬共軛熱傳」,國立中正大學碩士論文,2001。
    王松平,徐艷芳,強化對流傳質的物理機製及其控制,青島大學學報 16,32-36,2003。
    郭平生,華責,韋紹波,溫度場與電場在奇異熱電效應中的協同,華南理工大學學報 30,7-10,2002。
    韓光澤,華責,魏耀東,傳遞過程強化的新途徑─場協同,自然雜誌24,273-277,2002。
    王竹溪,統計物理學導論,凡異出版社,1985。
    王竹溪,熱力學簡明教程,亞東出版社,1988。
    汪志誠,熱力學與統計物理,凡異出版社,1996。
    吳大猷,理論物理-熱力學、氣體運動及統計力學,聯經出版社,1979。
    祝玉學、趙學龍譯,物理系統的元胞自動機模擬,北京清華大學出版社,2003。
    陳熙,動力論及其在傳熱與流動研究中的應用,清華大學出版社,1996。
    過增元、黃素逸,場協同原理與強化傳熱新技術,中國電力出版社,2004。
    劉玉鑫,熱學,北京大學出版社,2002。
    劉連壽,理論物理基礎教程,高等教育出版社,2003。

    下載圖示 校內:立即公開
    校外:2007-06-01公開
    QR CODE