| 研究生: |
郭筱晴 Guo, Xiao-Qing |
|---|---|
| 論文名稱: |
應用高密度環境溫度觀測網(STONK)探討土地利用與氣溫分布之關聯 The application of Smart Temperature and environment Observation Network in Kaohsiung (STONK) : the relationship between local air temperature and land use |
| 指導教授: |
林子平
Lin, Tzu-Ping |
| 學位類別: |
碩士 Master |
| 系所名稱: |
規劃與設計學院 - 建築學系 Department of Architecture |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 中文 |
| 論文頁數: | 101 |
| 中文關鍵詞: | IoT物聯網 、高密度量測網 、都市熱島偏差 、土地利用 、日夜溫差 |
| 外文關鍵詞: | Internet of things, high-density measurement network, land use, day night temperature difference |
| 相關次數: | 點閱:112 下載:20 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在全球都市高度開發以及都市化過程,人口急遽成長使都市範圍不斷往外擴,土地使用方式不斷的改變,導致都市熱壓力的上升,影響到人體熱舒適性和居住生活空間等品質。面對日益嚴重的熱壓力問題,使都市氣候議題更加受到重視,因此取得更細緻的都市監測資料成為許多研究上不可或缺的重要項目,其中都市氣候監測網的規模和覆蓋範圍取決於城市之空間範圍和形態,其規模與範圍將影響到人力及時間成本,尤其在於數據蒐集與處理上。因此本研究將帶入IoT物聯網應用於高密度都市環境監測網內,以便於未來智慧化城市上的發展。
回顧過往臺灣的都市氣候之研究,臺灣南部區域的都市包括臺南、嘉義、高雄已有建置環境溫度監測網,其中本研究挑選高雄作為研究對象,因高雄市為臺灣第二大都市,為南臺灣重要的工業重鎮,且具有多樣貌的自然地貌與都市型態。而過去已有相關氣候文獻於探討高雄的都市熱島環境,從既有的中央氣象站或者建立環境溫度量測網取得氣候資料,然而其研究範圍僅限於舊高雄市(高雄縣市行政區合併前之高雄市),因此本研究將擴增研究範圍至高雄都會區,藉由高密度環境溫度監測網(Smart Temperature and Environment Observation Network in Kaohsiung, STONK)蒐集近一年的氣溫資料進行分析,透過GIS地理資訊軟體呈現都市氣候地圖,並找出各季日夜間的熱島現象。
本研究根據高雄的都市熱環境分布情形,從風環境在各季風速、風向上的表現,以及藉由Landsat衛星熱影像資料反演出地表溫度,並呈現都市不同地貌的溫度分布情形,以此評估高雄環境背景氣候下與都市熱環境之關聯性,其中地表溫度較能細緻呈現出高低溫分布樣貌,因此本研究將進一步探討高雄多樣化的土地利用特性。
在高雄的密集監測網收集的氣溫資料分析中,顯示高低溫的表現與日夜交替有關,並存在四種典型的溫度特徵組,分別為「日高夜高組」、「日低夜低組」、「日高夜低組」、「日低夜高組」,而在這四組溫度特徵分類中與環境因子最有相關性的為地理位置與土地利用。因此本研究藉由觀測資料之各逐時的溫度表現,結合空間資料如監測點的地理位置和法定土地使用分區及現況街廓調查,分析該地區影響溫度日夜間表現之因素,進而提出相對應的改善熱環境之對策與未來都市規劃上的建議。另外本研究將此研究分類方式應用於高雄市府近期積極開發地區之亞洲新灣區計畫,藉由鄰近該地區監測點之氣溫資料與空間資料如土地利用,評估各區中影響微氣候變化的因素,建議地方政府在未來都市規劃上的調適策略,亦有助於建立及各不同區域性的環境評估之參考。
In the process of global urban development, the growth of the population makes the urban scope continue to expand, land use changes, resulting in the rise of urban heat pressure, affecting the human thermal comfort and living space. Therefore, urban monitoring data has become an important project in many researches. The scale and coverage of urban climate monitoring network depends on the spatial scope and form of the city, and its scale and scope will affect human and time costs, especially in data collection and processing. So in this study will using Internet of things (IoT) into the high-density monitoring network to facilitate the future development of smart cities.
In the past studies of urban climate in Taiwan, the cities in southern Taiwan include Tainan, Chiayi, and Kaohsiung. In this study, Kaohsiung was selected as the research object, because it an important industrial town in southern Taiwan and the second largest city in Taiwan, with multiple natural landforms and urban forms. There have been environmental documents on Kaohsiung's urban heat island, obtaining climate data from existing central weather stations or setting up high-density measurement network, but the scope of its research is limited to the old Kaohsiung City (Kaohsiung City before the merger of the administrative districts of Kaohsiung County), so this study will expand the scope of research to Kaohsiung Metropolitan Area, by Smart Temperature and Environment Observation Network in Kaohsiung, (STONK) collected nearly a year's temperature data for analysis, presented urban climate maps through GIS tools, and identified heat island phenomena on various days and nights.
In the temperature data analysis collected by Kaohsiung's dense monitoring network, it is shown that the performance of high and low temperature is related to the day and night alternating, and there are four typical temperature characteristic groups, namely, "Day high and Night high group", "Day and Night low group", "Day high and Night low group", "Day low and Night hight group" and the most relevant with geographical location and land use.
英文文獻
[1]. Chen YC, Fröhlich D, Matzarakis A, Lin TP, Urban Roughness Estimation Based on Digital Building Models for Urban Wind and Thermal Condition Estimation-Application of the SkyHelios Model Atomsphere, 8(12), 247 (2017).
[2]. Chen YC, Lin TP, Lin FY, Chen CY, A Simple Approach to Establish Urban Energy Consumption Map Using the Combination of LiDAR and Thermal Image. International Journal of Architectural and Environmental Engineering, 11(12) (2017).
[3]. Chen YC, Lin TP, Shih WY, Modeling the urban thermal environment distributions in Taipei Basin using Local Climate Zone (LCZ) View Document. Urban Remote Sensing Event, 10.1109/JURSE.2017.7924531 (2017).
[4]. WMO. 2008. Guide to Meteorological Instruments and Methods of Observation, 7th edn. Instruments and Observing Methods Report No. 8. (2008).
[5]. Catherine L. Muller, Lee Chapman, C. S. B. Grimmond, Duick T. Young, Xiaoming Cai, Sensors and the city: a review of urban meteorological networks. International Journal of Climatology homepage,Volume 33, Issue 7, 1585-1600. (2013).
[6]. UN. 2009. World urbanization prospects, The 2007 Revision Population Database. (2009).
[7]. UN, cited 2013: World urbanization prospects. (2013).
[8]. Chen, Y. C., Liao, Y. J., Yao, C. K., Honjo, T., Wang, C. K., & Lin, T-P., The application of a high-density street-level air temperature observation network (HiSAN): The relationship between air temperature, urban development, and geographic features. Science of the Total Environment, 685, 710-722. (2019)
[9]. Chen, Y. C., Yao, C. K., Honjo, T., & Lin, T-P. (2018). The application of a high-density street-level air temperature observation network (HiSAN): Dynamic variation characteristics of urban heat island in Tainan, Taiwan. Science of the Total Envir onment, 626, 555-566.
[10]. Chao Rena, Ka Lun Laua, Kam Po Yiub, Edward Ng, The application of urban climatic mapping to the urban planning of high-density cities: The case of Kaohsiung, Taiwan. The International Journal of Urban Policy and Planning, 31:1-16. (2012)
[11]. K.A Eldrandaly,M.S.Abu-Zaid.Comparison of Six GIS-Based Spatial Interpolation Methods for Estimating Air Temperature in Western Saudi Arabia.. (2011).
[12]. I.D.Steward and T.R.Oke.Urban Climates. (2017).
[13]. Qihao ,Dengsheng and Jacquelyn.Estimation of land surface temperature–vegetation abundance relationship for urban heat island studies. (2003).
[14]. Sobrino, Jimenez-Munoz and Paolini.Land surface temperature retrieval from LANDSAT TM 5. (2004)
[15]. Guiyun, Tian Algorithm for Automated Mapping of Land Surface Temperature Using LANDSAT 8 Satellite Data. Hindawi Publishing Corporation Journal of Sensors, Volume 2016, Article ID 1480307. (2016)
[16]. Klimaatlas, Nachbarschaftsverband Stuttgart (Stuttgart RegionalFederation), Climate study for the area of the Stuttgart Regional Fed-eration and bordering areas of the Stuttgart region. Landeschaupt-stadt Stuttgart, Amt fur Umweltschutz, Abteilung Stadtklimatologie:Stuttgart (1992).
[17]. VDI, VDI-Guideline 3787, Part 1, Environmental Meteorology-Climate and Air Pollution Maps for Cities and Regions. VDI, BeuthVerlag: Berlin (1997).
[18]. Matzarakis A., Röckle R, Richter CJ, Höfl HC, Steinicke W, Streifeneder M, Mayer H, Planungsrelevante Bewertung des Stadtklimas—Am Beispiel von Freiburg im Breisgau. Gefahrstoffe −Reinhaltung der Luft, 68, 334–340 (2008).
[19]. Chen L, Ng E, An XP, Ren C, He J, Lee M, Wang U, Sky view factor analysis of street canyons and its implications for intra-urban air temperature differentials in high-rise, high-density urban areas of Hong Kong: a GIS-based simulation approach. Int J Climatol 32(1): 121–136 (2012).
[20]. Dozier J, A method for satellite identification of surface temperature fields of subpixel resolution. Remote Sens. Environ. 11, 221-229 (1981).
[21]. Lo, CP, Quattrochi DA, Luvall JC Application of Highresolution Thermal Infrared Remote Sensing and GIS to Assess the Urban Heat Island Effect. Int. J. Remote Sens. 18, 287-304, (1997).
[22]. Deilami, K., Kamruzzaman, M., &Liu, Y. Urban heat island effect: A systematic review of spatio-temporal factors, data, methods, and mitigation measures. International Journal of Applied Earth Observation and Geoinformation, 67, 30–42. https://doi.org/10.1016/J.JAG.2017.12.009. (2018).
[23]. K.A Eldrandaly,M.S.Abu-Zaid. Comparison of Six GIS-Based Spatial Interpolation Methods for Estimating Air Temperature in Western Saudi Arabia..(2011).
[24]. Tsuyoshi HONJO, Analysis of urban heat island movement and intensity in Tokyo metropolitan area by AMeDAS data. Journal of Agricultural Meteorology 75(2):84-91. (2019) .
中文文獻
[1]. 林子平,陳思元,洪國安。建構高雄市微氣候象站之應用研究。高雄厝研究發展補助計畫。(2018)。
[2]. 林憲德,孫振義,李魁鵬,郭曉青。台南地區都市規模與都市熱島強度之研究。都市與計劃。32卷1期 2005 / 04 / 01。P83-97。(2005)。
[3]. 林憲德,郭曉青,李魁鵬,陳子謙,陳冠廷。臺灣海岸形成市之都市熱島現象與改善對策解析-以台南、高雄及新竹為例。28卷3期。P323-341。(2001)
[4]. 廖昱捷。應用高密度地面氣溫量測網(HiSAN)於氣溫與土地利用及覆蓋之分析。成功大學建築所碩士論文。(2018)。
[5]. 姚俊魁。台南都會區高密度地面氣溫量測網(HiSAN)之建置及氣溫之時空分佈與都市型態分析。成功大學建築所碩士論文。(2017)。
[6]. 陳思元。高雄都會區高密度環境溫度觀測網路(STONK)之建置及應用。成功大學建築所碩士論文。(2019)。
[7]. 陳育成。臺灣都市氣候地圖之研究。成功大學建築所博士論文。(2018)。
[8]. 黃千容。不同時空尺度下都市地表覆蓋與熱環境之關聯性探討。成功大學建築所碩士論文。(2019)。
[9]. 香港中文大學,空氣流通評估方法可行性研究研究結果摘要,香港:香港中文大學,(2005)。
[10]. 張效通,新北市核心都會區減緩熱島效應指導計畫暨策略點改善規劃,http://ddpp.ntu.edu.tw/index.php/services/107-2017-07-26-15-45-52/230-2017-07-14-07-37-08,(2017)
[11]. 馮豐隆,黃志成。空間模式應用於林分結構母數推估之研究。中興大學實驗林研究彙刊。19(2): 57-75。(1997)。