簡易檢索 / 詳目顯示

研究生: 吳依璇
Wu, Yi-Xuan
論文名稱: 水化矽酸鈣斷裂行為之分子動力學研究
Fracture behavior of calcium-silicate-hydrate via molecular dynamics simulation
指導教授: 王雲哲
Wang, Yun-Che
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 英文
論文頁數: 112
中文關鍵詞: 分子動力學水化矽酸鈣凝膠孔洞氫氧化鈣抗拉裂紋擴張阻尼
外文關鍵詞: molecular dynamics simulation, calcium silicate hydrate, gel pore, calcium hydroxide, tension, crack propagation, damping
相關次數: 點閱:110下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文透過分子動力學模擬,研究奈米尺度下的水化矽酸鈣(C-S-H),並將C-S-H模型導入凝膠孔洞與氫氧化鈣(Ca(OH)2或CH),探討C-S-H、有凝膠孔洞的C-S-H及氫氧化鈣水化矽酸鈣複合物的斷裂行為,其中包含抗拉和裂紋擴張問題,並討論材料的阻尼性質。起始之C-S-H原子模型之化學式為(CaO)1.6(SiO2)(H2O)1.633,密度約為2.38 g/cm3,且具有層狀結構,由化學式可知鈣矽比為1.6,水矽比為1.633。在分子動力學模擬中,C-S-H模型之分子力場為CSH-FF,氫氧化鈣模型之分子力場為CLAYFF,而Ca(OH)2與C-S-H間之分子力場是以CLAYFF為主,分子力場包含非鍵結與鍵結之交互作用力,非鍵項為短程蘭納-瓊斯勢勢能和長程庫倫靜電勢能,鍵結項為鍵拉伸勢能和鍵角彎曲勢能。在模型建構上,使用X射線繞射與選區電子繞射來分析及探討結構。C-S-H中孔洞的直徑為約13 Å是臨界孔徑,小於臨界孔徑C-S-H會自行癒合。應用拉伸模擬,由不同的原子方向得抗拉強度約4 ∼ 7 GPa。C-S-H裂紋擴張模擬中分成兩種,一種是層間斷裂,另一種是層內斷裂,層間斷裂強度大約3 ∼ 3.5 GPa,層內斷裂強度大概在3.2 ∼ 4 GPa,強度的變化取決於空隙的大小。給予C-S-H反覆載重,其動態模數約在32 ∼ 56 GPa,取決於原子的方向,而tanδ的趨勢為,隨著孔徑越大,tanδ的值隨著下降,另外、亦發現有氫氧化鈣的C-S-H比有孔洞的C-S-H具有較低的tanδ值。

    The fracture behavior of calcium silicate hydrate (C-S-H) is studied via the molecular dynamics (MD) simulations. The chemical composition of the studied C-S-H is (CaO)1.6(SiO2)(H2O)1.633 and its density 2.38 g/cm3. Voids and calcium hydroxide, Ca(OH)2 or CH, inclusions are considered in our atomistic models for understanding their effects on fracture behavior and damping properties. The microstructure of the C-S-H consists of silicate tetrahedron layers. Its calcium-to-silicon and water-to-silicon ratio are 1.6 and 1.633, respectively. The interatomic force fields used in this study is a hybrid of for CSH-FF and CLAY-FF force field, where the latter is for calcium hydroxide (Portlandite) and its interactions with C-S-H. The force fields include bonding (stretching and bond angle) and non-bonding (short-range Lennard-Jones and long-range Coulomb electrostatics) types of potential energies. By x-ray diffraction (XRD) and selected area electron-beam diffraction, the atomic structures of the MD models are determined and consistent with literature data. The critical void size that can exist in C-S-H is found to be 13 Å by simulation; smaller would trigger self healing. From tension simulations, it is found the tensile strength is about 4 ∼ 7 GPa, depending on atomic orientation. From fracture simulations, the strength for interlayer fracture is about 3 ∼ 3.5 GPa, and that for intralayer fracture is about 3.2 ∼ 4 GPa. The variations in strength depend on the size of void. Under cycling loading, dynamic modulus is about 32 ∼ 56 GPa, depending on atomic orientation. The linear viscoelastic damping, tanδ, decreases with the size of void. Furthermore, the damping of CH/C-S-H composites is smaller than that of void/C-S-H composites.

    CHINESE ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii ACKNOWLEDGMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii NOMENCLATURE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 Goals and motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Literature review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.2.1 C-S-H structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.2.2 XRD data of C-S-H . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.2.3 Pore structure in cement . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.2.4 Portlandite, Calcium hydroxide Ca(OH)2 . . . . . . . . . . . . . . . . 8 1.2.5 Silicate polymers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 1.3 Outline of this thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2 Theoretical foundations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.1 X-ray diffraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.2 Selected area electron diffraction, SAED . . . . . . . . . . . . . . . . . . . . . 14 2.3 Loss tangent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.4 Energy minimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 3 Molecular dynamics (MD) simulation method . . . . . . . . . . . . . . . . . . . 17 3.1 Interatomic potential . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 3.2 Construction of atomistic models . . . . . . . . . . . . . . . . . . . . . . . . . 23 3.2.1 C-S-H model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 3.2.2 Portlandite model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 3.3 Statistical ensembles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 3.4 Boundary conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 4 Results and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 4.1 Structural analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 4.1.1 X-ray diffraction results . . . . . . . . . . . . . . . . . . . . . . . . . 27 4.1.2 Selected area electron diffraction results . . . . . . . . . . . . . . . . . 31 4.2 Mechanical properties of C-S-H with gel pore and Portlandite . . . . . . . . . 34 4.2.1 Gel pore in C-S-H . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 4.2.2 Portlandite particles in C-S-H . . . . . . . . . . . . . . . . . . . . . . 42 4.2.3 Uniaxial tension simulation . . . . . . . . . . . . . . . . . . . . . . . 44 4.2.4 Crack simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 4.2.4.1 Interlayer fracture . . . . . . . . . . . . . . . . . . . . . . . 60 4.2.4.2 Intralayer fracture . . . . . . . . . . . . . . . . . . . . . . . 67 4.2.5 Oscillatory loading . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 5 Conclusions and future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 5.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 5.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 LIST OF REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 APPENDICES Appendix A: List of all simulation cases . . . . . . . . . . . . . . . . . . . . . . . 88 Appendix B: Presentation slides . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

    [1] M. S. Imbabi, C. Carrigan, and S. McKenna. Trends and developments in green cement and concrete technology. International Journal of Sustainable Built Environment, 1(2):194–216, 2012.
    [2] N. Zhang and R. Shahsavari. Balancing strength and toughness of calcium-silicate-hydrate via random nanovoids and particle inclusions: Atomistic modeling and statistical analysis. Journal of the Mechanics and Physics of Solids, 96:204–222, 2016.
    [3] R. J.-M. Pellenq, A. Kushima, R. Shahsavari, K. J. Van Vliet, M. J. Buehler, S. Yip, and F.-J. Ulm. A realistic molecular model of cement hydrates. Proceedings of the National Academy of Sciences, 106(38):16102–16107, 2009.
    [4] R. Shahsavari. Hierarchical Modeling of Structure and Mechanics of Cement Hydrate. PhD thesis, Massachusetts Institute of Technology, February 2011.
    [5] L. Desgranges, D. Grebille, G. Calvarin, G. Chevrier, N. Floquet, and J.-C. Niepce. Hydrogen thermal motion in calcium hydroxide: Ca(OH)2. Acta Crystallographica Section B, 49(5):812–817, 1993.
    [6] R. T. Cygan, J. J. Liang, and A. G. Kalinichev. Molecular models of hydroxide, oxyhydroxide, and clay phases and the development of a general force field. The Journal of Physical Chemistry B, 108(4):1255–1266, 2004.
    [7] R. F. Feldman and P. J. Sereda. A model for hydrated Portland cement paste as deduced from sorption-length change and mechanical properties. Matériaux et Construction, 1(6):509–520, 1968.
    [8] J. D. C. McConnell. The hydrated calcium silicates riversideite, tobermorite, and plombierite. Mineralogical Magazine and Journal of the Mineralogical Society, 30(224):293–305, 1954.
    [9] R. Shahsavari, R. J.-M. Pellenq, and F.-J. Ulm. Empirical force fields for complex hydrated calcio-silicate layered materials. Physical Chemistry Chemical Physics, 13(3):1002–1011, 2011.
    [10] S. I. Martin. Synthesis of tobermorite: A cement phase expected under repository conditions. Technical report, Lawrence Livermore National Lab., CA (United States), 1994.
    [11] Y. A. Janik, W. Kurdowski, R. Podsiadly, and J. Samseth. Fractal structure of C-S-H and Tobermorite phases. Acta Physica Polonica A, 100(4):529–537, 2001.
    [12] J. F. Young, S. Mindess, A. Bentur, and R. J. Gray. The Science and Technology of Civil Engineering Materials. Prentice Hall, Upper Saddle River, New Jersey, 1998.
    [13] I. Soroka. Concrete in hot environments. E & FN Spon, London, 1993.
    [14] K. Maekawa, T. Ishida, and T. Kishi. Multi-scale modeling of concrete performance. Journal of Advanced Concrete Technology, 1(2):91–126, 2003.
    [15] W. Kurdowski. Cement and concrete chemistry. Springer, Dordrecht, 2014.
    [16] W. Franus, R. Panek, and M. Wdowin. SEM investigation of microstructures in hydration products of portland cement. In E. K. Polychroniadis, A. Y. Oral, and M. Ozer, editors, 2nd International Multidisciplinary Microscopy and Microanalysis Congress, pages 105–112. Springer, Cham, 2015.
    [17] V. S. Ramachandran and J. J. Beaudoin. Handbook of analytical techniques in concrete science and technology: principles, techniques and applications. Noyes Publications/William Andrew Publishing, USA, 2001.
    [18] S. Marshak. Earth: portrait of a planet. W. W. Norton & Company, New York, 2008.
    [19] CrystalMaker. http://crystalmaker.com/. [Online; accessed 22-June-2018].
    [20] W. Massa. Crystal structure determination. Springer, Berlin, 2004.
    [21] LAMMPS. Compute xrd command. http://lammps.sandia.gov/doc/compute_xrd.html. [Online; accessed 24-May-2018].
    [22] S. P. Coleman, D. E. Spearot, and L. Capolungo. Virtual diffraction analysis of Ni [0 1 0] symmetric tilt grain boundaries. Modelling and Simulation in Materials Science and Engineering, 21(5):055020, 2013.
    [23] Wikipedia. Selected area diffraction (SAED). https://en.wikipedia.org/wiki/
    Selected_area_diffraction. [Online; accessed 17-May-2018].
    [24] C. M. Ionescu. The human respiratory system: An analysis of the interplay between anatomy, structure, breathing and fractal dynamics. Springer, London, 2013.
    [25] R. S. Lakes. Viscoelastic materials. Cambridge University Press, New York, 2009.
    [26] LAMMPS. Minimize command. http://lammps.sandia.gov/doc/minimize.html.
    [Online; accessed 20-April-2018].
    [27] Y. H. Dai and Y. Yuan. A nonlinear conjugate gradient method with a strong global convergence property. SIAM Journal on optimization, 10(1):177–182, 1999.
    [28] E. Polak and G. Ribiere. Note sur la convergence de méthodes de directions conjuguées. Revue française d'informatique et de recherche opérationnelle. Série rouge, 3(16):35–43, 1969.
    [29] LAMMPS. http://lammps.sandia.gov/. [Online; accessed 20-April-2018].
    [30] Z. H. Lin. Molecular dynamics simulation of CSH under various loading and thermal conditions. Master’s thesis, National Cheng Kung University, June 2017.
    [31] F. S. Emami, V. Puddu, R. J. Berry, V. Varshney, S. V. Patwardhan, C. C. Perry, and H. Heinz. Force field and a surface model database for silica to simulate interfacial properties in atomic resolution. Chemistry of Materials, 26(8):2647–2658, 2014.
    [32] OVITO. https://ovito.org/. [Online; accessed 22-June-2018].
    [33] M. E. Tuckerman. Statistical Mechanics: Theory and Molecular Simulation. Oxford University Press, UK, 2010.
    [34] P. J. Mohr, D. B. Newell, and B. N. Taylor. CODATA recommended values of the fundamental physical constants: 2014. Journal of Physical and Chemical Reference Data, 45(4):043102, 2016.
    [35] LAMMPS. Boundary command. http://lammps.sandia.gov/doc/boundary.html. [Online; accessed 20-May-2018].
    [36] T. Narushima, H. Tsukamoto, and T. Yonezawa. High temperature oxidation event of gelatin nanoskin-coated copper fine particles observed by in situ TEM. AIP Advances, 2(4):042113, 2012.
    [37] R. K. Singhal, B. Gangadhar, H. Basu, V. Manisha, G. R. K. Naidu, and A. V. R. Reddy. Remediation of malathion contaminated soil using zero valent iron nano-particles. American Journal of Analytical Chemistry, 3:76–82, 2012.
    [38] K. M. Saoud, I. Ibala, D. El Ladki, O. Ezzeldeen, and S. Saeed. Microwave assisted preparation of calcium hydroxide and barium hydroxide nanoparticles and their application for conservation of cultural heritage. In M. Ioannides, N. Magnenat-Thalmann, E. Fink, R. Zarnic, A.-Y. Yen, and E. Quak, editors, Digital Heritage. Progress in Cultural Heritage: Documentation, Preservation, and Protection, pages 342–352. Springer, Cham, 2014.
    [39] ParaView. https://www.paraview.org/. [Online; accessed 22-June-2018].
    [40] C. Rodriguez-Navarro, K. Elert, and R. Ševčík. Amorphous and crystalline calcium carbonate phases during carbonation of nanolimes: implications in heritage conservation. CrystEngComm, 18:6594–6607, 2016.
    [41] N. Krautwurst, L. Nicoleau, M. Dietzsch, I. Lieberwirth, C. Labbez, A. Fernandez-Martinez, A. E. S. Van Driessche, B. Barton, S. Leukel, and W. Tremel. Two-step nucleation process of calcium silicate hydrate, the nanobrick of cement. Chemistry of Materials, 30(9):2895–2904, 2018.

    無法下載圖示 校內:2023-07-01公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE