簡易檢索 / 詳目顯示

研究生: 陳氏青
Tran, Thanh Thi
論文名稱: 水膠制動器的製備及特性探討
Fabrication and Characterization of Actuators Based on Predesigned Hydrogels
指導教授: 劉瑞祥
Liu, Jui-Hsiang
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 英文
論文頁數: 72
中文關鍵詞: 水凝膠互穿聚合網絡熱響應性可逆制動器低臨界溶解溫度
外文關鍵詞: Hydrogel, Interpenetrating polymer network (IPN), Thermal responsive hydrogel, Reversible Actuator, The lower critical solution temperature (LCST)
相關次數: 點閱:87下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,聚合物水凝膠致動器在生物醫學領域的材料引起了人們極大的興趣。在本研究中,使用單體N-isopropyacrylamine (NIPAM),acrylamide (AM)和交聯劑N,N’-methylenebis(acrylamide) (Bis-Am) 合成了熱驅動性水凝膠。經由NIPAM的低臨界溶解溫度 (LCST) 特性設計,所合成的水凝膠在溫度改變下具有體積膨脹或收縮的性能。另外,單體AM用於提高所合成水凝膠的機械強度,經由DMA分析,其結果顯示,不同比例的單體NIPAM/AM和不同組成的互穿聚合網絡(IPN)皆會影響水凝膠的機械性能。聚合的水凝膠互穿網絡在多次循環的測試中,表現出在熱刺激下具有可逆的熱驅動作用,其結果證明所合成的水凝膠可以有效地將熱能轉化為機械能。然而,雖然互穿聚合物網絡的結構增強了機械性能,同時也會使熱驅動效能受到限制。在此研究中,我們所製造的擬虹膜水凝膠,可以展現出受溫度控制的可逆徑向擴展/閉合運動。為了實現可受光控制的人造感光虹膜,我們將具有光熱轉換效果的聚多巴胺(PDA)塗佈於熱致動水凝膠的表面,塗佈後的水凝膠致動器同時具有光/熱的趨動性。為了製備熱可驅動水凝膠,本研究設計了雙層水凝膠和梯度水凝膠結構,二者皆具有熱驅動性彎曲效果。由研究成果顯示,本研究所製備的熱響應性水凝膠,可期望未來在微型機械人及生物醫學領域中,皆能具有多種潛力的實際應用。

    Polymeric hydrogel actuator attracted great interest as platform materials in the biomedical field. Syntheses of thermal-responsive hydrogels including monomeric N-isopropyacrylamine (NIPAM), acrylamide (AM) and crosslinker N,N’-methylenebis(acrylamide) (Bis-Am) were carried out. Through the lower critical solution temperature (LCST) characteristic of NIPAM, the synthesized hydrogels display the performance of volume swelling/deswelling with various temperatures. AM monomer was used to improve the mechanical strength of the synthesized gels. By controlling the content of monomer ratio and compositions of interpenetrating networks (IPN), mechanical properties of the synthesized hydrogels were enhanced and estimated via DMA analyzer. Under thermal stimulation, the polymerized crosslinked and IPN hydrogels show reversible actuation for many cycles. The results indicate that the synthesized hydrogel could effectively transfer thermal energy to mechanical power. The synthesized IPN hydrogels enhanced mechanical properties but reduced actuation properties due to the restriction of swelling space. The fabricated iris-like hydrogel exhibits reversible radial widening/closing motions controlled by temperature. In order to achieve the light-controlled artificial iris, polydopamine (PDA) was used to coat on the surface of LCE. The synthesized PDA coated LCEs show NIR responsive radial widening and closing actuations revealing artificial iris functions. To fabricate thermal actuators, both bilayer hydrogels and gradient hydrogels were successfully created. Based on the results, the predesigned photo/thermal responsive hydrogels are expected to show potential practical applications in micro robot and biomedical fields.

    Table of Contents Abstract I 中文摘要 II Acknowledgements III Table of Contents IV Table of Figures VII Table of Tables XI I. Introduction 1 1-1 Preface 1 1-2 Research motivation 1 II. Literature Review 3 2-1 Introduction of hydrogels 3 2-2 Classifications of hydrogels 5 2-3 Crosslinking in hydrogels 6 2-4 Physical and chemical hydrogels 7 2-5 Interpenetrating network hydrogel 10 2-6 Classification of interpenetrating polymer network hydrogels 11 2-6-1 Polymerization procedure 11 2-6-2 Constituent polymer structure 13 2-6-3 Polymer type 15 2-7 Application of hydrogels 18 2-7-1 Drug deliver 18 2-7-2 Actuator hydrogel 19 2-7-3 Tissue engineering 22 2-7-4 Contact lens 23 2-8 Introduction about thermal-responsive NIPAM 26 2-9 Introduction about polydopamine coated application 29 III. Experiment 31 3-1 Materials 31 3-2 Instruments 31 3-3 Experimental 32 3-3-1 Synthesis of poly(NIPAM-co-AM) 32 3-3-2 Solid state 13C-NMR spectroscopy (ssNMR) 34 3-3-3 Thermal gravity analysis for hydrogels 35 3-3-4 Sample preparation for compressive test 35 3-3-5 Measurement of equilibrium water content (EWC) 36 3-3-6 SEM sample preparation 37 3-3-7 Fabrication of NIR responsive artificial iris hydrogels 38 IV. Results and Discussion 39 4-1 Components ratio of PNIPAM/AM hydrogel 39 4-2 Structure identification 40 4-3 Characterization of the polymers 45 4-3-1 Transmittance of linear PNIPAM 45 4-3-2 Elasticity of cross-linked PAM 46 4-3-3 Effect of AM on lower critical solution temperature 47 4-4 Thermal properties of the hydrogels 48 4-5 Mechanical behavior 50 4-6 Water content of the synthesized hydrogels 54 4-7 Schematic of the thermal responsive hydrogels 57 4-8 Thermal actuation of hydrogels 58 4-8-1 Homogeneous strip actuator 58 4-8-2 Gradient actuator 61 4-8-3 Bilayer actuator 63 4-8-4 Iris-like hydrogels 64 4-9 Microstructure and morphology of the hydrogels 68 V. Conclusions 69 References 70

    1. Schild, H. G., Poly (N-isopropylacrylamide): experiment, theory and application. Progress in polymer science 1992, 17 (2), 163-249.
    2. Chirani, N.; Gritsch, L.; Motta, F. L.; Fare, S., History and applications of hydrogels. Journal of biomedical sciences 2015, 4 (2), 1-23.
    3. Lee, S. C.; Kwon, I. K.; Park, K., Hydrogels for delivery of bioactive agents: a historical perspective. Adv Drug Deliv Rev 2013, 65 (1), 17-20.
    4. Ullah, F.; Othman, M. B. H.; Javed, F.; Ahmad, Z.; Akil, H. M., Classification, processing and application of hydrogels: A review. Materials Science and Engineering: C 2015, 57, 414-433.
    5. Raza, F.; Zafar, H.; Zhu, Y.; Ren, Y.; Ullah, A.; Khan, A. U.; He, X.; Han, H.; Aquib, M.; Boakye-Yiadom, K. O.; Ge, L., A Review on Recent Advances in Stabilizing Peptides/Proteins upon Fabrication in Hydrogels from Biodegradable Polymers. Pharmaceutics 2018, 10 (1), 16.
    6. Nakamae, K.; Miyata, T.; Jikihara, A.; Hoffman, A. S., Formation of poly (glucosyloxyethyl methacrylate)-concanavalin A complex and its glucose-sensitivity. Journal of Biomaterials Science, Polymer Edition 1995, 6 (1), 79-90.
    7. Hoffman, A. S., Hydrogels for biomedical applications. Advanced Drug Delivery Reviews 2012, 64, 18-23.
    8. Mathur, A. M.; Moorjani, S. K.; Scranton, A. B., Methods for synthesis of hydrogel networks: A review. Journal of Macromolecular Science, Part C: Polymer Reviews 1996, 36 (2), 405-430.
    9. Caló, E.; Khutoryanskiy, V. V., Biomedical applications of hydrogels: A review of patents and commercial products. European Polymer Journal 2015, 65, 252-267.
    10. Iizawa, T.; Taketa, H.; Maruta, M.; Ishido, T.; Gotoh, T.; Sakohara, S., Synthesis of porous poly (N‐isopropylacrylamide) gel beads by sedimentation polymerization and their morphology. Journal of applied polymer science 2007, 104 (2), 842-850.
    11. Yang, L.; Chu, J. S.; Fix, J. A., Colon-specific drug delivery: new approaches and in vitro/in vivo evaluation. International journal of pharmaceutics 2002, 235 (1-2), 1-15.
    12. Maolin, Z.; Jun, L.; Min, Y.; Hongfei, H., The swelling behavior of radiation prepared semi-interpenetrating polymer networks composed of polyNIPAAm and hydrophilic polymers. Radiation Physics and Chemistry 2000, 58 (4), 397-400.
    13. Darnell, M. C.; Sun, J. Y.; Mehta, M.; Johnson, C.; Arany, P. R.; Suo, Z.; Mooney, D. J., Performance and biocompatibility of extremely tough alginate/polyacrylamide hydrogels. Biomaterials 2013, 34 (33), 8042-8.
    14. Lopes, C. M. A.; Felisberti, M. I., Mechanical behaviour and biocompatibility of poly(1-vinyl-2-pyrrolidinone)–gelatin IPN hydrogels. Biomaterials 2003, 24 (7), 1279-1284.
    15. Lohani, A.; Singh, G.; Bhattacharya, S. S.; Verma, A., Interpenetrating polymer networks as innovative drug delivery systems. J Drug Deliv 2014, 2014, 583612.
    16. Zhao, L.; Zhou, Z.-L.; Guo, Z.; Gibson, G.; Brug, J. A.; Lam, S.; Pei, J.; Mao, S. S., Development of semi-interpenetrating polymer networks and quantum dots–polymer nanocomposites for low-cost, flexible OLED display application. Journal of Materials Research 2012, 27 (04), 639-652.
    17. Chirila, T. V.; George, K. A.; Abdul Ghafor, W. A.; Pas, S. J.; Hill, A. J., Sequential homo-interpenetrating polymer networks of poly(2-hydroxyethyl methacrylate): Synthesis, characterization, and calcium uptake. Journal of Applied Polymer Science 2012, 126 (S2), E455-E466.
    18. Millar, J. R., 263. Interpenetrating polymer networks. Styrene-divinylbenzene copolymers with two and three interpenetrating networks, and their sulphonates. Journal of the Chemical Society (Resumed) 1960, (0), 1311-1317.
    19. Sperling, L. H.; Hu, R., Interpenetrating Polymer Networks. Polymer 2014, (0), 677-724.
    20. Nemirovski, N.; Silverstein, M. S.; Narkis, M., Latex interpenetrating polymer networks: From structure to properties. Polymers for Advanced Technologies 1996, 7 (4), 247-256.
    21. Sperling, L. H., Interpenetrating Polymer Networks: An Overview. Polymer 1994, 239, 3-38.
    22. Siegfried, D. L.; Thomas, D. A.; Sperling, L. H., Thermoplastic interpenetrating polymer networks of a triblock copolymer elastomer and an ionomeric plastic. I. Rheology and morphology. Journal of Applied Polymer Science 1981, 26 (1), 177-192.
    23. Wen, Y.; Liu, Y.; Zhang, H.; Zou, M.; Yan, D.; Chen, D.; Zhao, Y., A responsive porous hydrogel particle-based delivery system for oncotherapy. Nanoscale 2019, 11 (6), 2687-2693.
    24. Le, X.; Lu, W.; Zhang, J.; Chen, T., Recent progress in biomimetic anisotropic hydrogel actuators. Advanced science 2019, 6 (5), 1801584.
    25. Ma, C.; Lu, W.; Yang, X.; He, J.; Le, X.; Wang, L.; Zhang, J.; Serpe, M. J.; Huang, Y.; Chen, T., Bioinspired anisotropic hydrogel actuators with on–off switchable and color‐tunable fluorescence behaviors. Advanced Functional Materials 2018, 28 (7), 1704568.
    26. Chapekar, M. S., Tissue engineering: Challenges and opportunities. Journal of Biomedical Materials Research 2000, 53 (6), 617-620.
    27. Hunt, J. A.; Chen, R.; van Veen, T.; Bryan, N., Hydrogels for tissue engineering and regenerative medicine. Journal of Materials Chemistry B 2014, 2 (33), 5319.
    28. Place, E. S.; George, J. H.; Williams, C. K.; Stevens, M. M., Synthetic polymer scaffolds for tissue engineering. Chem Soc Rev 2009, 38 (4), 1139-51.
    29. Maldonado-Codina, C.; Efron, N., Hydrogel lenses-material and manufacture: a review. Optometry in Practice 2003, 4, 101-115.
    30. Shah, S.; Sasmal, P. K.; Lee, K.-B., Photo-triggerable hydrogel–nanoparticle hybrid scaffolds for remotely controlled drug delivery. Journal of Materials Chemistry B 2014, 2 (44), 7685-7693.
    31. Zhang, X.; Zhou, L.; Zhang, X.; Dai, H., Synthesis and solution properties of temperature‐sensitive copolymers based on NIPAM. Journal of applied polymer science 2010, 116 (2), 1099-1105.
    32. Luo, R.; Wu, J.; Dinh, N. D.; Chen, C. H., Gradient porous elastic hydrogels with shape‐memory property and anisotropic responses for programmable locomotion. Advanced Functional Materials 2015, 25 (47), 7272-7279.
    33. Lee, H.; Dellatore, S. M.; Miller, W. M.; Messersmith, P. B., Mussel-inspired surface chemistry for multifunctional coatings. science 2007, 318 (5849), 426-430.
    34. Li, Z.; Zhang, X.; Wang, S.; Yang, Y.; Qin, B.; Wang, K.; Xie, T.; Wei, Y.; Ji, Y., Polydopamine coated shape memory polymer: enabling light triggered shape recovery, light controlled shape reprogramming and surface functionalization. Chemical science 2016, 7 (7), 4741-4747.
    35. Liu, Q.; Wang, N.; Caro, J. r.; Huang, A., Bio-inspired polydopamine: a versatile and powerful platform for covalent synthesis of molecular sieve membranes. Journal of the American Chemical Society 2013, 135 (47), 17679-17682.
    36. Liu, Y.; Ai, K.; Liu, J.; Deng, M.; He, Y.; Lu, L., Dopamine‐melanin colloidal nanospheres: an efficient near‐infrared photothermal therapeutic agent for in vivo cancer therapy. Advanced materials 2013, 25 (9), 1353-1359.

    下載圖示
    2023-12-31公開
    QR CODE