簡易檢索 / 詳目顯示

研究生: 林紹凱
Lin, Shao-Kai
論文名稱: 基於HHT的無刷馬達系統線上健康監測
HHT-based On-Line Health Monitoring for Brushless Motor System
指導教授: 蔡明祺
Tsai, Mi-Ching
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 76
中文關鍵詞: 無刷馬達系統希爾伯特-黃轉換電氣阻抗訓練策略線上健康監測
外文關鍵詞: Brushless motor system, Hilbert-Huang transform, electrical impedance, training strategy, health monitoring
相關次數: 點閱:108下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究應用希爾伯特-黃轉換(Hilbert Huang Transform, HHT)的訊號處理方式,將受到外擾與系統影響之非穩定電流萃取出特徵成分,並配合無刷馬達輸入電壓計算出電氣阻抗,同時整合具精密度能力評估的訓練策略,提出一適用於無刷馬達系統的線上監測方法。首先,介紹無刷馬達系統運作原理與常見錯誤類型,並針對現有監測方法進行探討,提出以高靈敏性與系統性的無刷馬達系統電氣阻抗作為監測目標。於訊號處理上,採用HHT處理真實世界中量測到的非穩態訊號,同時考量電氣阻抗量測的精密度,於本研究中引用量測重複性與再現性(Gauge Repeatability & Reproducibility, GR&R)的精密度評估方式,訓練出可信賴的健康指標,並整合於線上監測流程,達到線上診斷機台狀況之目的。由理論分析與實驗結果呈現,可驗證本論文所提出的健康監測方法具有優越的性能與表現。

    This thesis is aimed at developing the on-line health monitoring approach for a brushless motor system. Electrical impedance of motor system describes the relationship between input voltage and output measured line current and it provides better understanding of the system’s condition, thus it is utilized in the proposed health monitoring approach. Due to the fact most of the practical signals in the fields of engineering are non-stationary. An advanced time-frequency signal processing method named Hilbert Huang Transform (HHT) is applied to extract the characteristic component of line current and derive equivalent impedance. A test of Gauge Repeatability & Reproducibility (GR&R) is applied to ensure high precision performance of impedance measurement in the proposed training strategy. Health reference is trained in training strategy and is applied to on-line monitoring. Theoretical analysis and experiments are conducted to evaluate the effectiveness of the proposed health monitoring approach.

    中文摘要 I Abstract II 致謝 VIII 目錄 X 表目錄 XIV 圖目錄 XV 符號表 XVIII 第一章緒論 1 1.1 前言 1 1.2 研究背景與文獻回顧 2 1.3 論文架構 4 第二章 無刷馬達系統 5 2.1無刷馬達系統簡介 5 2.1.1 無刷馬達與驅動器 5 2.1.2 無刷馬達驅動原理 7 2.1.3 無刷馬達系統 8 2.2無刷馬達系統異常錯誤 10 2.2.1 繞組短路 10 2.2.2 轉子偏心 12 2.2.3 缺相 13 2.2.4 異常錯誤類型 14 2.3無刷馬達系統之電氣阻抗 15 2.3.1 現行的監測方法 15 2.3.2 電氣阻抗 18 2.3.3 訊號量測上的問題 21 第三章 訊號處理方法 23 3.1 快速傅立葉轉換 23 3.1.1 FFT的限制條件 23 3.1.2 FFT的缺點 24 3.2希爾伯特-黃轉換 27 3.2.1 瞬時頻率與瞬時振幅 27 3.2.2 本質模態函數 29 3.2.3 經驗模態分解 30 3.2.4 HHT對非穩態訊號進行分析 36 第四章 監測方法與流程架構 39 4.1 特徵電流 39 4.1.1 定義特徵電流 39 4.1.2 尋找特徵電流 42 4.1.3 計算電氣阻抗 42 4.2監測流程 44 4.2.1 訓練策略 46 4.2.2 線上監測 51 第五章 實驗系統架設與實驗結果 52 5.1 實驗系統架設與軟硬體介紹 52 5.2 特徵電流實驗 54 5.3 訓練策略實驗 57 5.3.1 無刷馬達系統電氣阻抗 57 5.3.2 量測精密度評估 58 5.4 線上健康監測實驗 62 5.4.1 製造異常錯誤 62 5.4.2 線上健康監測 65 第六章 結論與未來研究建議 69 6.1 總結 69 6.2 未來研究建議 70 參考文獻 71 附錄 74

    [1]Aderiano M. da Silva, Richard J. Povinelli and Nabeel A. O. Demerdash, “Induction Machine Broken Bar and Stator Short-Circuit Fault Diagnostics Based on Three-Phase Stator Current Envelopes,” IEEE Transactions on Industrial Electronics, vol. 55, no. 3, pp. 1310-1318, 2008.
    [2]A. Al-Refai and N. Bata, “Evaluating Measurement and Process Capabilities by GR&R with Four Quality Measures,“ Measurement, vol. 43, no. 6, pp. 842–851, 2010.
    [3]Chinmaya Kar and A.R. Mohanty, “Monitoring Gear Vibrations through Motor Current Signature Analysis and Wavelet Transform,” Mechanical System and Signal Processing, vol. 20, pp. 158-187, 2006.
    [4]Duane C. Hanselman, Brushless Permanent-Magnet Motor Design. Mcgraw-Hill, 1994.
    [5]G. B. Kliman and J. Stein, “Methods of Motor Current Signature Analysis,” Electric Machines and Power Systems, vol.20, pp. 463-474, 1992.
    [6]J. R. Stack, “Fault Signature Detection for Rolling Element Bearings in Electric Machines,” Georgia Institute of Technology, Atlanta, GA, Ph.D. Thesis, 2002.
    [7]K. D. Hurst and T. G. Habetler, “Thermal Monitoring and Parameter Tuning Scheme for Induction Machines,” in : Conf. Rec. IEEE IAS Annu.Meeting, vol. 1, pp. 136–142, 1997.
    [8]M.M. Botha, “Electrical Machine Failures, Causes and Cures,” IEEE EMD conference record, no. 444, pp.117-117, 1997.
    [9]M. Flynn, “Regression Analysis of Automated Measurement Systems,” IEEE Transaction on Instrumentation and Measurement, vol. 58, no. 10, pp.3373-3379, 2009.
    [10]N. E. Huang, Z. Shen, S. R. Long, M. L. Wu, H. H. Shih, Q. Zhen, N. C. Yen, C. C. Tung, and H. H. Liu, “The Empirical Mode Decomposition and Hilbert Spectrum for Nonlinear and Non-stationary Time Series Analysis,” Proc. Roy. Soc. London A, vol.454, pp.903-995, 1998.
    [11]N. Tandon and A. Choudhury, “A Review of The Vibration and Acoustic Measurement Methods for Detection of Defects in Rolling Element Bearings,” Tribology International, vol. 32, no.8, pp. 469-480, 1999
    [12]N. E. Huang and S. S. P. Shen, Eds., Hilbert–Huang Transform and Its Applications. World Scienti?c, 2005.
    [13]P. Milanfar and J. H. Lang, “Monitoring the Thermal Condition of Permanent-Magnet Synchronous Motors,” IEEE Trans. Aerosp. Electron. Syst., vol. 32, no. 4, pp. 1421-1429, 1996.
    [14]RoboPath: get on a high demand path , http://www.robopath.com/。
    [15]S. Phillips and M. Branicky, "Velocity Estimation Using Quantized Measuraments," Proc. 42nd IEEE Conf. Dec. Control, pp.4847-4852, 2003.
    [16]S. Nandi, H. A. Toliyat, and X. Li, “Condition Monitoring and Fault Diagnosis of Electrical Motors – A Review,” IEEE Transactions on Energy Conversion, vol. 20, pp. 719-729, 2005
    [17]蔡清雄,林孟璋,伺服馬達之健康預警裝置及其計算方法,台灣專利,公證號I414919,2010。
    [18]鄭儒陽,經驗模態分解之矽智財設計,國立成功大學資訊工程學系碩士論文,2013。

    下載圖示 校內:2019-08-29公開
    校外:2019-08-29公開
    QR CODE