簡易檢索 / 詳目顯示

研究生: 楊朝宇
Yang, Chou-Yu
論文名稱: 介電層表面特性對有機薄膜電晶體的電性影響研究
Influence of dielectric surface properties on the charge transport characteristics in pentacene-based thin film transistors
指導教授: 鄭弘隆
Cheng, Horng-Long
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程研究所
Institute of Electro-Optical Science and Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 97
中文關鍵詞: 高分子絕緣材料有機薄膜電晶體Polymethylmethacrylate五苯Pentacene
外文關鍵詞: pentacen, polymer insulator materials, Polymethylmethacrylate, organic thin film transistors
相關次數: 點閱:73下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文研究以五苯(Pentacene)有機半導體為主動層之薄膜電晶體,探討五苯的薄膜結構與電傳輸性質的關係。研究分兩部份,第一部份,探討無機介電層與高分子修飾層表面性質對於有機薄膜電晶體的電特性影響;第二部份,使用不同分子量的polymethylmethacrylate(PMMA)高分子絕緣材料修飾二氧化矽介電層表面,成長五苯薄膜並製作有機薄膜電晶體,探討高分子絕緣材料分子量對於有機薄膜電晶體的載子傳輸性質的影響。
    第一部份:探討不同介電層表面特性對成長五苯薄膜結構與製作之五苯有機薄膜電晶體電性的影響。利用電性量測結果,比較在不同介電層表面特性上的五苯有機薄膜電晶體電特性;利用接觸角量測介電層表面能;使用原子力顯微鏡觀察五苯薄膜的表面形態;使用X-ray繞射量測五苯薄膜的結晶結構;利用拉曼光譜分析五苯薄膜分子微結構。結果指出,高分子絕緣材料旋轉塗佈在較粗糙的介電層表面時,可使五苯有機薄膜電晶體的載子傳輸效率較佳。最後,我們建議五苯薄膜的垂直結構與載子傳輸效率並沒有直接關係。
    第二部份:利用不同分子量的PMMA修飾二氧化矽介電層表面,於其上成長400 Å的五苯薄膜,並製作薄膜電晶體元件。利用原子力顯微鏡、X-ray繞射、與拉曼光譜研究五苯薄膜的結構與形態學。結果指出,五苯薄膜成長於分子量較大的PMMA修飾層上,可獲致較佳的結晶結構與較強的分子間振動耦合能,其場效載子遷移率明顯優於僅使用二氧化矽介電層的元件,載子遷移率最高可達1.44 cm2/Vs。而且,PMMA修飾層分子量愈大使得五苯電晶體元件的場效載子遷移率也愈大。最後,我們發現五苯薄膜厚度400 Å表面的晶粒大小與薄膜電晶體的載子遷移率並無直接相關。

    In this study, the structural and electrical transport properties of polycrystalline pentacene films on inorganic dielectrics and polymeric modification layers were investigated using organic thin films transistors (OTFTs) with top contact configuration. In part 1, we studied the influence of surface properties of inorganic dielectrics and polymeric modification layers on the morphology of pentacene films and electrical characteristics of pentacene-based OTFTs. In part 2, we studied the effects of molecular weight of polymeric modification layers on the pentacene film growth and the relevant electrical transport properties in pentacene-based OTFTs.
    Part 1: We have fabricated the pentacene thin films on PMMA and on SiO2 surfaces featuring the different surface energy and surface roughness. The surface properties of gate dielectric layers and structure of pentacene films have been investigated using contact angle meter, atomic force microscopy (AFM), X-ray diffraction (XRD), and Raman spectroscopy. On PMMA surfaces the pentacene films displayed the high crystal quality from XRD scans, although the film on PMMA with significantly smaller grain size. Finally, high performance tiny grain polycrystalline pentacene-based thin-film transistors, including a PMMA dielectric modification layer, were produced.
    Part 2: The pentacene films with thicknesses 400 Å were grown on the PMMA buffer layers with different molecular weight, which deposited upon SiO2 gate dielectrics, and the corresponding pentacene-based OTFTs were studied. The structure of pentacene films were characterized by AFM, XRD, and Raman spectroscopy. Structural analysis revealed that the pentacene films grown on PMMA with better crystal structure and stronger intermolecular coupling as compared to that grown on native SiO2 surface, especially on that using large molecular weight PMMA. It resulted in a higher field-effect mobility of above 1.44 cm2 / Vs which is close to one order of magnitude improvements than that using a conventional SiO2 gate dielectric layer. Finally, we have not observed direct relationship between the grain size and the performance of pentacene-based OTFTs.

    中文摘要 I 英文摘要 III 誌謝 V 目次 VI 表目錄 VIII 圖目錄 X 第一章 有機薄膜電晶體簡介 1 1-1有機半導體簡介 1 1-2 有機半導體傳輸機制 1 1-3 場效應電晶體基本原理 2 1-4 有機薄膜電晶體概論 4 1-4-1 有機薄膜電晶體基本結構 5 1-4-2 有機電晶體之高分子絕緣材料與有機半導體層影響 5 1-4-3 有機薄膜電晶體操作原理 6 1-4-4 有機薄膜電晶體基本特性 7 1-4-5 有機薄膜電晶體的應用 9 1-5 本論文研究目的 10 第二章 實驗方法與分析工具 20 2-1 實驗材料 20 2-1-1 有機半導體材料 20 2-1-2 二氧化矽絕緣材料 20 2-1-3 高分子絕緣材料 20 2-2元件製程 21 2-2-1 基版清洗 21 2-2-2 旋轉塗佈 21 2-2-3 熱蒸鍍成長Pentacene與金屬電極 21 2-3 分析工具 22 2-3-1 電性分析 22 2-3-2 接觸角 22 2-3-3 原子力顯微鏡 23 2-3-4 X-ray薄膜繞射儀(XRD) 24 2-3-5 拉曼散射量測系統 25 第三章 無機介電層與高分子修飾層表面特性對於有機薄膜電晶體電性影響 33 3-1 前言 33 3-2 實驗 35 3-3結果與討論 36 3-3-1 電性量測結果 36 3-3-2 遲滯效應 36 3-3-3 原子力顯微鏡結果與分析 38 3-3-4 X-ray繞射分析 38 3-3-5 拉曼散射光譜量測與分析 40 3-4 結論 42 第四章 探討不同分子量之高分子修飾層對於五苯有機薄膜電晶體電性影響 61 4-1 前言 61 4-2 實驗方法 62 4-3結果與討論 63 4-3-1 電性量測分析 63 4-3-2 Pentacene薄膜特性分析 64 4-3-2-1 介電層表面能分析 64 4-3-2-2 原子力顯微鏡分析 64 4-3-2-3 X-ray繞射分析 66 4-3-2-4 Raman量測分析 67 4-4 結論 69 第五章 總結與未來展望 87 參考文獻 89

    [1] C. W. Tang and S. A. VanSlyke, “Organic electroluminescent diodes”, Appl. Phys. Lett., 51, 913, 1987.
    [2] J. H. Burroughes, D. D. Bradley, A. R. Brown, R. N. Marks, K. Mackay,R. H. Friend, P. L. Burn and A. B. Holmes, “Light-emitting diodes based on conjugated polymers”, Nature, 347, 539, 1990.
    [3] F. Ebisawa, T. Kurokawa and S. Nara, “Electrical properties of polyacetylene/polysiloxane interface”, J. Appl. Phys., 54, 3255, 1983.
    [4] A. Tsumura, H. Koezuka and T. Ando, “Macromolecular electronic device:field-effect transistor with a polythiophene thin film”, Appl. Phys. Lett., 49, 121, 1986.
    [5] W. Riess, S. Karg, V. Dyakonov, M. Meier and M. Schwoerer,
    “Electroluminescence and photovoltaic effect in PPV schottky diodes”, J.Lumine., 60, 906, 1994.
    [6] L. Zhou, A. Wanga, S. C. Wu, J. Sun, S. Park, and T. N. Jackson, “All-organic active matrix flexible display”, Appl. Phys. Lett., 88, 083502, 2006.
    [7] C. D. Dimitrakopoulos and P. R. L. Malenfant, “Organic thin film transistors for large area electronics”, Adv. Mater., 14, 99, 2002.
    [8] M. G. Kane, J. Campi, M. S. Hammond, F. P. Cuomo, B. Greening, C. D. Sheraw, J. A. Nichols, D. J. Gundlach, J. R. Huang, C. C. Kuo, L. Jia, H. Klauk, and T. N. Jackson, “Analog and Digital Circuits Using Organic Thin-Film Transistors on Polyester Substrates”, IEEE Electron Device Let., 21, 534, 2000.
    [9] H. Sirringhaus, N. Tessler and R. H. Friend, “Integrated optoelectronic devices based on conjugated polymers”, Science, 280, 1741, 1998.
    [10] C. J. Drury, C. M. J. Mutsaers, C. M. Hart, M. Matters and D. M. deLeeuw, “Low-cost all-polymer integrated circuits”, Appl. Phys. Lett., 73, 108, 1998.
    [11] G. H. Gelinck, T. C. T. Geuns and D. M. de Leeuw, “High-performance all-polymer integrated circuits”, Appl. Phys. Lett., 77, 1487, 2000.
    [12] B. Crone, A. Dodabalapur, Y. Y. Lin, R. W. Filas, Z. Bao, A. LaDucaand R. Sarpeshkar, H. E. Katz, and W. Li, “Large-scale complementary integrated circuits based on organic transistors”, Nature, 403, 521, 2000.
    [13] V. C. Sundar, J. Zaumseil, V. Podzorov, E. Menard, R. L. Willett, T. Someya, M. E. Gershenson, and J. A. Rogers, “Elastomeric Transistor Stamps:Reversible Probing of Charge Transport in Organic Crystals”, Science, 303, 1644, 2004.
    [14] D. J. Gundlach, Y. Y. Lin, T. N. Jackson, S. F. Nelson, and D. G. Schlom,“Pentacene organic thin-film
    transistors-molecular ordering and mobility”, IEEE Electron Device Lett., 18, 87, 1997.
    [15] J. E. Lilienfeld, and US Patenet, 1 745 175, 1930.
    [16] F. Barbe, and C. R. Westgate,“Surface state parameters of metal-free phthalocyanine single crystals”, J. Phys. Chem.
    Solids., 31, 2679, 1970.
    [17] M. L. Petrova, L. D. Rozenshtein, and Fiz. Tverd. Tela, Sov. Phys.-Solid State 12, 961, 1970.
    [18] Ebisawa, T. Kurokawa, and S. Nara,“Electrical properties of polyacetylene/polysiloxane interface”, J. Appl. Phys., 54, 3255, 1983.
    [19] H. Koezuka, A. Tsumura, and T. Ando,“Field-effect transistor with polythiophene thin film”, Synth. Met., 18, 699, 1987.
    [20] A.Tsumura, H. Koezuka, and Y. Ando,“Polythiophene
    field-effect transistor:Its characteristics and operation
    mechanism”, Synth. Met., 25, 11, 1988.
    [21] G. Horowitz, “Organic field-effect transistors”, Adv. Mater., 10, 365, 1998.
    [22] F. De Angelis, S. Cipolloni, L. Mariucci, and G. Fortunato, “ High-field-effect-mobility pentacene thin-film transistors with polymethylmetacrylate buffer layer”, Appl. Phys. Lett., 86, 203505, 2005.
    [23] W. Y. Chou, and H. L. Cheng, “An orientation-controlled pentacene film aligned by photoaligned polyimide for organic thin-film transistor applications”, Adv. Fun. Meter., 14, 811, 2004.
    [24] Y. Jang, D. H. Kim, Y. D. Park, J. H. Cho, M. Hwang, and K. Choa, “Low-voltage and high-field-effect mobility organic transistors with a polymer insulator”, Appl. Phys. Lett., 88, 072101, 2006.
    [25] S Lee, B Koo, J Shin, E Lee, H. Park, and H. Kim, “Effects of hydroxyl groups in polymeric dielectrics on organic
    transistor performance”, Appl. Phys. Lett., 88, 162109, 2006.
    [26] T. B. Singh, F. Meghdadi, S. Günes, N. Marjanovic, G. Horowitz, P. Lang, S. Bauer, and N. S. Sariciftci, “High-performance ambipolar pentacene organic field-effect transistors on poly(vinyl alcohol) organic gate dielectric”, Adv. Mater., 17, 2315, 2005.
    [27] 施敏, “半導體元件物理與製造技術”, 國立交通大學出版社, 286, 2003.
    [28] S. Ohta, T. Chuman, S. Miyaguchi, H. Satoh, T. Tanabe, Y. Okuda and M. Tsuchida, “Active Matrix Driving Organic Light-Emitting Diode Panel Using Organic Thin-Film Transistors”, J. J. of Appl. Phys., 44, 3678, 2005.
    [29] R. Ruiz, B. Nickel, N. Koch, L. Feldman, R. Haglund, A. Kahn and G. Scoles, “Pentacene ultrathin film formation on reduced and oxidized Si surfaces ”, Phys. Rev. B. 67, 125406, 2003.
    [30] R. Ruiz, A. Papadimitratos, A. C. Mayer, and G. G. Malliaras, “Thickness Dependence of Mobility in Pentacene Thin-Film Transistors”, Adv. Mater., 7, 1795, 2005.
    [31] L. F. Drummy, and D. C. Martin,“Thickness-driven orthorhombic to triclinic phase transformation in pentacene thin films ”, Adv. Mater., 17, 903, 2005.
    [32] S. E. Fritz, T. W. Kelley, and C. D. Frisbie, “Effect of dielectric roughness on performance of pentacene TFTs and restoration of performance with a polymeric smoothing layer”, J. Phys. Chem. B, 109, 10574, 2005.
    [33] B. A. Weinstein and R. Zallen, in Light Scattering in Solids Ⅳ( Eds: M. Cardona and G. Güntherodt), Springer, 500, Berlin 1984.
    [34] S. Steudel, S. D. Vusser, S. D. Jonge, D. Janssen, S. Verlaak, J. Genoe, and P. Heremans, “Influence of the dielectric roughness on the performance of pentacene transistors”, Appl. Phys. Lett., 85, 4400, 2004.
    [35] Y. Jang, J. H. Cho, D. H. Kim, Y. D. Park, M. Hwang, and K. Cho, “Effects of the permanent dipoles of self-assembled monolayer-treated insulator surfaces on the field-effect mobility of a pentacene thin-film transistor”, Appl. Phys. Lett., 90, 132104, 2007.
    [36] L. L. Chua, J. Zaumseil1, J. F. Chang, E. C. W. Ou, P. K. H. Ho, H. Sirringhaus and R. H. Friend, “General observation of n-type field-effect behaviour in organic semiconductors” Nature, 434, 194, 2005.
    [37] G. Gu, M. G. Kane, J. E. Doty, and A. H. Firester, “Electron traps and hysteresis in pentacene-based organic thin-film transistors”, Appl. Phys. Lett., 87, 243512, 2005.
    [38] 8H. E. Katz, X. M. Hong, and A. Dodabalapur, “Organic field-effect transistors with polarizable gate insulators”, J. Appl. Phys., 91, 1572, 2002.
    [39] H. L. Cheng, W. Y. Chou, C.W. Kuo, F. C. Tang, and Y. W. Wang, “Electric field-induced structural changes in pentacene-based organic thin-film transistors studied by in-situ microRaman spectroscopy”, Appl. Phys. Lett. 88, 161918, 2006.
    [40] S. Uemura, A. K. R. Sakaida, T. Kawai, M. Yoshida, S. Hoshino, T. Kodzasa and T. KamataThe, “organic FET with poly(peptide) derivatives and poly(methyl-methacrylate) gate dielectric”, Synth. Met., 153, 405, 2005.
    [41] H. L. Cheng, Y. S. Mai, W. Y. Chou, and L. R. Chang, “Influence of molecular structure and microstructure on device performance of polycrystalline pentacene thin-film transistors”, Appl. Phys. Lett., 90, 171926, 2007.
    [42] G. Horowitz,“ Organic thin film transistors: From theory to real devices ”, J. Mater. Res., 19, 1946, 2004.
    [43] S. J. Kang , M. Noh, D. S. Park, H. J. Kim, C. N. Whang, and C. H. Chang,“Influence of postannealing on polycrystalline pentacene thin film transistor ”, J. Appl. Phys., 95, 2293, 2004.
    [44] M. Shtein, J. Mapel, J. B. Benziger, and S. R. Forrest,“ Effects of film morphology and gate dielectric surface preparation on the electrical characteristics of organic-vapor-phase-deposited pentacene thin-film transistors ”, Appl. Phys. Lett., 81, 268, 2002.
    [45] T. Minakata, H. Imai, M. Ozaki and K. Saco, “Structural studies on highly ordered and highly conductive thin films of pentacene”, J. Appl. Phys., 72, 5220, 1992.
    [46] H. L. Cheng, Y. S. Mai, W. Y. Chou, L. R. Chang, X. W. Liang, “Thickness-Dependent Structural Evolutions and Growth Models in Relation to Carrier Transport Properties in Polycrystalline Pentacene Thin Films”, Adv. Funct. Mater., accepted, 2007.
    [47] C. C. Mattheus, G. A. de Wijs, R. A. de Groot and T. T. M. Palstram, “Modeling the polymorphism of pentacene”, J. Am. Chem. Soc., 125, 6323, 2003.
    [48] L. F. Drummy and D. C. Martin, “Thickness-driven orthorhombic to triclinic phase transformation in pentacene thin films”, Adv. Mater., 17, 903, 2005.
    [49] A. R. Brown, C. P. Jarrent, D. M. de Leeuw and M. Matters, “Field-effect transistors made from solution-processed organic semiconductors”, Synth. Met., 88, 37, 1997

    下載圖示 校內:2008-07-14公開
    校外:2008-07-14公開
    QR CODE