簡易檢索 / 詳目顯示

研究生: 吳青蔓
Wu, Ching-Man
論文名稱: 合成特殊構型之中孔洞氧化矽與其在智慧玻璃窗之應用
Synthesis of Mesoporous Silica with Specific Morphologies for Application in Smart Window
指導教授: 林弘萍
Lin, Hong-Ping
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 94
中文關鍵詞: 中孔洞氧化矽鹽析效應液晶5CB智慧型玻璃窗記憶效應
外文關鍵詞: salting-out effect, mesoporous silica, smart window, 5CB liquid crystal
相關次數: 點閱:118下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 自然界有許多複雜的生物結構是高度結合的有機物與無機物,如生物體中的骨頭、牙齒以及海洋中的海藻、貝類等,有機—無機複合材料,是經由分子自組裝過程形成各種階層式結構,本研究模擬自然界生物成礦行為以合成有機—無機複合材料,探討有機界面活性劑分子與無機物分子的自組裝行為,並製備具有特殊構型之中孔洞氧化矽材料。
    本研究嘗試以帶有18個碳的陽離子界面活性劑(C18TACl) 和助界面活性劑(水楊酸)在特定比例下,和四乙氧基矽烷(TEOS)經過簡單的混合攪拌,即可合成出螺旋狀的孔洞氧化矽材料;使用16個碳的陽離子界面活性劑(C16TABr)和陰離子界面活性劑(硬脂酸鈉) 在特定比例下,和TEOS混合攪拌後,可合成出紅血球構型的中孔洞氧化矽。藉由調整助界面活性劑(或陰離子界面活性劑)/陽離子型界面活性劑莫耳比例與溫度、水量、pH值、TEOS添加量,尋找適當的合成範圍,並驗證其特殊構型之合成機制。將紅血球狀氧化矽進行100oC水熱處理後,中心較薄的氧化矽會溶解並沉積於外圍,使產物構型轉變為甜甜圈。
    另外,因合成材料剩餘之廢液含有硫酸,對環境有害,所以使用檸檬酸取代硫酸以合成氧化矽材料,然而產率較低,構形也不為螺旋狀或紅血球狀,查詢文獻得知硫酸根具有相當強度的鹽析效應,因此在使用檸檬酸的溶液中添加硫酸鈉(添加量決定於硫酸的莫耳數)後,即可合成出螺旋狀氧化矽與紅血球狀氧化矽,證實鹽析效應可幫助氧化矽沉澱,且因鈉離子也具有鹽析效應,因此反應速率與產率都比使用硫酸的系統來的高,但鹽析效應過強時,氧化矽沉澱速度過快,將無法得到特殊構形之氧化矽,因此合成材料時,鹽析效應需控制在適當的強度。以後合成其他氧化矽材料時,可添加適當克數之硫酸鈉以提升反應速率及產率。
    合成出之螺旋構形與紅血球構形之中孔洞氧化矽材料,其構型尺度分別為數個微米與奈米級,透過表面修飾上疏水性官能基矽烷後,材料堆疊之的空隙及孔洞適合均勻混合向列型液晶5CB,並分割出許多散射區塊,使液晶顯示器能散射光線,顯示為霧態,並在通入電場後為透明(液晶分子與電場方向平行),移去後仍保有透明之外觀,可為具有記憶效應之智慧玻璃窗,可透過簡單的按壓玻璃表面或加熱-冷卻之相變化使液晶重回混亂態,並達成節能型智慧玻璃窗之應用。使用兩種構型之氧化矽製備的智慧玻璃窗都具有應用於綠色建材之潛力,運用電場調控玻璃窗之穿透度以減少冷、暖氣與照明之能耗。

    Mesoporous silica materials with specific morphologies have attracted great interest due to their application in separation and catalysis. In this thesis, mesoporous silica materials with helical and erythrocyte-like morphologies are fabricated using an approach inspired by biomineralization. The formation mechanisms of the synthesized materials are investigated by changing the reaction conditions (e.g., the pH value, the molar ratio of the surfactant mixture, and so on). The waste solution contains sulfuric acid, and is hence harmful to the environment. Consequently, the sulfuric acid is replaced with citric acid. However, while citric acid is more environmental friendly, the mesoporous silica yield is low. Furthermore, the morphology of the synthesized silica is neither helical nor erythrocyte-like. However, when using citric acid and sodium sulfate in the synthesis process, both helical and erythrocyte-like mesoporous silica are produced and the yield is higher than that obtained when using sulfuric acid. It is thus confirmed that the salting out effect of sulfate ions is beneficial to synthesizing silica materials with specific morphologies. However, excessive salting out prevents the formation of the required silica morphologies, and hence the salting out effect must be carefully controlled. The practical application of the synthesized helical and erythrocyte-like silica is demonstrated by fabricating smart windows containing trimethylchlorosilane-modified calcined silica mixed with 4-Cyano-4'-pentylbiphenyl (5CB). The smart windows exhibit a high transmittance of ~90.5% at 80 V and retain a transmittance of ~82.0% once the voltage is turned off. They therefore offer the potential for significant energy savings.

    第一章 緒論...... 1 1.1 中孔洞材料...... 1 1.2 界面活性劑...... 3 1.2.1 界面活性劑之基本性質...... 3 1.2.2 界面活性劑之種類...... 4 1.2.3 微胞的形成...... 4 1.2.4 混合界面活性劑之系統...... 7 1.3 氧化矽源介紹...... 8 1.4 鹽析效應...... 11 1.5 表面修飾有機官能基...... 12 1.6 液晶基本介紹...... 13 1.6.1 液晶的光電性質...... 14 1.6.2 液晶顯示器的介紹...... 16 1.6.3 智慧型玻璃窗(Smart window)的介紹...... 17 1.7 研究動機與目的...... 18 第二章 實驗部分...... 19 2.1 化學藥品...... 19 2.2 合成中孔洞氧化矽之實驗流程...... 20 2.2.1以水楊酸和C18TACl之混合界面活性劑製備螺旋狀中孔洞氧化矽...... 20 2.2.2以硬脂酸鈉和C16TABr之混合界面活性劑製備中孔洞紅血球狀氧化矽...... 21 2.3 智慧型玻璃窗的製作...... 22 2.3.1 中孔洞氧化矽材料的疏水性修飾...... 22 2.3.2 製作智慧型玻璃窗...... 23 2.4儀器鑑定分析...... 24 2.4.1 穿透式電子顯微鏡 (Transmission Electron Microscopy;TEM)...... 24 2.4.2 氮氣等溫吸附/脫附測量 (N2 Adsorption/Desorption Isotherm)...... 24 2.4.3 傅立葉轉換紅外線光譜儀 (Fourier Transform Infrared Spectroscopy:FT-IR)...... 29 2.4.4 熱重分析儀 (Thermogravimetry Analysis;TGA) ......30 2.4.5 掃描式電子顯微鏡 (Scanning Electron Microscopy,SEM)...... 30 2.4.6 迴旋式磁流變分析儀 (Rheometer)...... 30 2.4.7 穿透度測量...... 31 第三章 螺旋狀中孔洞氧化矽之合成研究...... 32 3.1 研究動機與目的...... 32 3.2 結果與討論...... 33 3.2.1 合成方法與材料鑑定...... 33 3.2.2 探討水楊酸/C18TACl莫耳比對氧化矽形態之影響 ......36 3.2.3 探討總水量對氧化矽形態之影響...... 39 3.2.4 探討反應pH值對氧化矽形態之影響...... 41 3.2.5 探討TEOS添加量對氧化矽形態的影響...... 43 3.2.6 探討反應溫度對氧化矽形態之影響...... 45 3.2.7 探討流場對螺旋狀氧化矽長度之影響...... 46 3.2.8 探討水楊酸與較短碳鍊(C16TABr,C14TABr)的界面活性劑合成之氧化矽型態...... 47 3.2.9 使用檸檬酸與硫酸鈉取代硫酸對氧化矽形態之影響 ......50 3.2.10 鹽析效應強弱對氧化矽形態與產率之影響...... 55 3.2.11 使用相同鹽析效果探討pH值對氧化矽型態之影響 ......58 3.2.12 水熱pH值對螺旋狀氧化矽構型與孔洞結構之影響 ......60 3.3 中孔洞螺旋狀氧化矽應用於液晶顯示器...... 64 3.3.1 通入不同電壓下對液晶顯示器的結果...... 66 3.3.2 材料表面有無修飾疏水性官能基對於液晶顯示器的必要性 ......68 第四章 紅血球狀中孔洞氧化矽之合成研究...... 71 4.1 研究動機與目的...... 71 4.2 結果與討論...... 72 4.2.1 合成方法與材料鑑定...... 72 4.2.2 探討硬脂酸鈉/C16TABr莫耳比對氧化矽型態的影響 ......74 4.2.3 探討反應pH值對氧化矽型態之影響...... 76 4.2.4 水熱對氧化矽型態之影響...... 79 4.2.5 使用檸檬酸與硫酸鈉取代硫酸以合成紅血球狀中孔洞氧化矽 ......80 4.2.6 鹽析效應強弱對氧化矽型態與產率之影響...... 83 4.3 中孔洞紅血球狀氧化矽應用於液晶顯示器...... 84 4.3.1 通入不同電壓下對液晶顯示器的結果...... 85 4.3.2 將紅血球狀氧化矽進行表面修飾...... 86 4.4 液晶顯示器之記憶效應的應用前景...... 88 第五章 結論...... 90 參考文獻...... 92

    (1) Kresge, C.; Leonowicz, M.; Roth, W. J.; Vartuli, J.; Beck, J. Nature 1992, 359, 710.
    (2) Beck, J. S.; Vartuli, J. C.; Roth, W. J.; Leonowicz, M. E.; Kresge, C. T.; Schmitt, K. D.; Chu, C. T. W.; Olson, D. H.; Sheppard, E. W.; McCullen, S. B.; Higgins, J. B.; Schlenker, J. L. J. Am. Chem. Soc. 1992, 114, 10834.
    (3) Vartuli, J. C.; Kresge, C. T.; Roth, W. J.; McCullen, S. B.; Beck, J. S.; Schmitt, K. D.; Leonowicz, M. E.; Lutner, J. D.; Sheppard, E. W. “Advanced Catalysts and Nanostructured Materials” 1996, CH1, 1.
    (4) Fan, J.; Yu, C.; Gao, F.; Lei, J.; Tian, B.; Wang, L.; Luo, Q.; Tu, B.; Zhou, W.; Zhao, D. Angew. Chem. Int. Edit. 2003, 42, 3146.
    (5) Vinu, A.; Murugesan, V.; Hartmann, M. Chem. Mater. 2003, 15, 1385.
    (6) Lin, H.-P.; Kuo, C. L.; Wan, B.-Zu.; Mou, C.-Yuan. Chem. Mater. 2002, 49, 899.
    (7) Alfredsson, V.; Anderson, Michael W.Vinu. Chem. Mater. 1996, 8, 1141.
    (8) Lin, H.-P.; Mou, C.-Yuan. ACC. Chem. Res. 2002, 35, 927.
    (9) Kim, J. M.; Sakamoto, Y.; Hwang, Y.-K.; Kwon, Y.-U.; Terasaki, O.; Park, S.-E.; Stucky, G. D. J. Phys. Chem. B. 2002, 106, 2552.
    (10) Farid, G.; Kruk, M. Chem. Mater. 2017, 29, 4675.
    (11) Newalkar, B. L.; Olanrewaju, J.; Komarneni, S. Chem. Mater. 2001, 13, 552.
    (12) Nagaraju, N.; Fonseca, A.; Konya, Z.; Nagy, J. B. J. Mol. Catal. A-Chem. 2002, 181, 57.
    (13) Jal, P. K.; Patel, S.; Mishra, B. K. Talanta 2004, 62, 1005.
    (14) Cha, J. N.; Deming, T. J.; Morse, D. E.; Stucky, G. D. Abstr. Pap. Am. Chem. S, 2000, 219, U837.
    (15) Tian, Z.- R.; Liu, J.; Voigt, J. A.; McKenzie, B.; Xu, H. Angew. Chem. Int. Edit. 2003, 42, 413.
    (16) Noll, F.; Sumper, M.; Hampp, N. Nano Lett. 2002, 2, 91.
    (17) Zhong, Z.; Yin, Y.; Gates, B.; Xia, Y. Adv. Mater. 2000, 12, 206.
    (18) Rahman, Zia-U.; Wei, N.; Li, Z.; Sun, W.; Wang, D. New J. Chem. 2017, 41, 14122.
    (19) Wang, W.-H.; Xie, S.-H.; Zhou, W.-Z.; Sayari, A.; Chem. Mater. 2004, 16, 1756
    (20) Mann, S. Angew. Chem. Int. Edit. 2000, 39, 3392.
    (21) Kröger, N..; Deutzmann, R.; Sumper, M. Science. 1999, 286, 1192.
    (22) Vrieling, E. G.; Beelen, T. P. M.; van Santen, R. A.; Gieskes, W. W. C. Angew. Chem. Int. Edit. 2002, 41, 1543.
    (23) Todros,T. F. “Surfactants”, 1984.
    (24) Ritacco, H.; Albouy, P.-A.; Bhattacharyya, A.; Langevin, D. Phys. Chem. Chem. Phys. 2000, 2, 5243.
    (25) Chang, C. Y.; Wang, S. J.; Liu, I. J.; Chiu, Y. C. J. Chin. Chem. Soc. 1987, 34, 243.
    (26) Amos, D. A.; Markels, J. H.; Lynn, S.; Radke, C. J. J. Phys. Chem. B. 1998, 102, 2739.
    (27) Kopecký, Frantisek.; Fazekaš, Tomáš.; Kopecká, Božena.; Kaclík, P. “Hydrophobicity and critical micelle concentration of some quaternary ammonium salts with one or two hydrophobic tails”, 2007.
    (28) D. J. Mithchell, B. W. Ninham, J. Chem. Soc., Faraday, Trans. II, 1981, 77, 601.
    (29) Israelachvili, J. N.; Marčelja, Stjepan ;Horn, R. G. Q. Rev. Biophys. 1980, 13, 121.
    (30) Remita, S.; Dutt, S.; Siril, P. RSC Adv. 2017, 7, 5733
    (31) Yang, B.; Edler, K.; Guo, C.; Liu, H.-Z. “Microporous and Mesoporous Materials”, 2010, 131, 21.
    (32) Dai, L.-R.; Wang, T.-W.; Bu, L.-T..; Chen, G. Colloids Surf. A 2001, 181, 151
    (33) Han, S.-H.; Hou, W.-G.; Dang, W.-X.; Xu, J.; Hu, J.-F.; Li, D.-Q. Mater. Lett. 2003, 57, 4520.
    (34) Gai, F.-Y.; Zhou, T.-L.; Chu, G.; Li, Y.; Liu, Y.-L.; Huo, Q.-S.; Akhtar, F. Dalton Trans. 2016, 45, 508.
    (35) Chen, F.-X.; Huang, L.-M.; Li, Q.-Z. Chem. Mater. 1997, 9, 2685.
    (36) Kaler, E. W.; Murthy, A. K.; Rodriguez, B. E.; Zasadzinski, J. A. Science, 1989, 245, 1371.
    (37) Brasher, L. L.; Herrington, K. L.; Kaler, E. W. Langmuir, 1995, 11, 4267.
    (38) Yatcilla, M. T.; Herrington, K. L.; Brasher, L. L.; Kaler, E. W.; Chiruvolu, S.; Zasadzinski, J.A. J. Phys. Chem. 1996, 100, 5874.
    (39) Tsuchiya, K.; Nakanishi, H.; Sakai, H.; Abe, M. Langmuir, 2004, 20, 2117.
    (40) Aelion, R. ; Loebel, A.; Eirich, F. J. Am. Chem. Soc. 1950, 72, 5705.
    (41) 廖文家,中原大學化學所,2005.
    (42) 鄭舜宇,中山大學材料科學研究所,2001.
    (43) 陳俊光,中原大學化學所,2003.
    (44) Lin, H.-P.; Mou, C.-Y. Acc. Chem. Rev, 2002, 35, 927.
    (45) Endo, S.; Pfennigsdorff, A.; Goss, Kai-Uwe. Environ. Sci. Technol. 2002, 46, 1496.
    (46) Duong-Ly, K. C.; Gabelli, S. B. Methods Enzymol. 2014, 541, 85
    (47) Zhu, S.; Chambers, J. G.; Naik, V. “Kirk-Othmer Encyclopedia of Chemical Technology”, 2000, 22, 1.
    (48) Bockris, J. O'M.; Bowler-Reed J.; Kitchener, J. A. J. Chem. Soc. Faraday Trans. 1951, 47, 184.
    (49) Hofmeister, Franz. Arch. Exp. Pathol. Pharmakol. 1888, 24, 247.
    (50) Yang, Z. J. Biotechnol. 2009, 144, 12.
    (51) Wu, G.-W.; Koliadima, A.; Her, Y.-S.; Matijević, E. J. Colloid Interface Sci. 1997, 195, 222.
    (52) 張家勝,成大化學所,2013.
    (53) 陳怡蓁,成大化學所,2016.
    (54) http://www.flatpanelshd.com
    (55) Lovinger, A.J.; Amundson, K. R.; Davis, D. D. Chem. Mater. 1994, 6, 1726.
    (56) Lampert, C.M. Circ. Dev. Mag., IEEE. 1992, 8, 19.
    (57) Mouquinho, A. I.; Petrova, K.; Barros, M. T.; Sotomayor, João. “New Polymer Networks for PDLC Films Application” 2012. CH5, 139.
    (58) 林莉婕,成大化學所,2017.
    (59) Lin, Z.; Cai, J. J.; Scriven, L. E.; Davis, H. T. J. Phys. Chem. 1994, 98, 5984.
    (60) Twej, W. Iraqi J. Sci. 2009, 50, 43.
    (61) Kosuge, K.; Sato, T.; Kikukawa, N.; Takemori, M. Chem. Mater. 2004, 16, 899.
    (62) Lerouge, S.; Berret, J.-F. Polymer 2010, 230, 1.
    (63) 李芃葶,成大化學所,2014.
    (64) 黃美葳,成大化學所,2018.

    下載圖示 校內:2022-07-19公開
    校外:2022-07-19公開
    QR CODE