簡易檢索 / 詳目顯示

研究生: 葉建南
Yeh, Chien-Nan
論文名稱: 含嵌入式任意方向裂縫之功能梯度壓電材料第III型破壞分析
Mode III Fracture Analysis of Embedded Arbitrarily Oriented Cracks in Functionally Graded Piezoelectric Materials
指導教授: 褚晴暉
Chue, Ching-Hwei
學位類別: 博士
Doctor
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 114
中文關鍵詞: 任意方向裂縫奇異積分方程式能量密度因子功能梯度壓電材料強度因子能量釋放率
外文關鍵詞: Arbitrarily oriented crack, Singular integral equations, Energy density factors, Functionally graded piezoelectric material, Energy release rate.
相關次數: 點閱:132下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要目的是分析兩個功能梯度壓電條板接合之面外問題,每條板內各含單一任意方向裂縫,裂縫表面假設為不可滲透型(impermeable)與可滲透型(permeable)裂縫。壓電材料之極化方向為六方對稱型,材料梯度假設為指數型函數。利用傅立葉轉換法(Fourier transform),分別依據幾何形狀與混合邊界條件化成兩組奇異積分方程式,再藉由Gauss-Chebyshev積分公式進行數值求解,並從數值解中探討邊界條件、裂縫長度、裂縫角度及非均質材料參數對於強度因子、能量密度因子和能量釋放率的影響。相關的退化問題也於文中有詳細的討論。
    以不可滲透型為例,在外加電負載作用下能量釋放率會出現負值現象,此現象不符合物理意義,預期裂縫在該情形下將不會成長,因此能量釋放率不適合用來求解壓電材料方面的破壞問題,故本文選用能量密度因子量來求解功能梯度壓電材料的裂縫問題。由於壓電梯度材料的材料參數Scr和Gcr 仍屬未知,故現在尚無法去判斷裂縫開始成長之方向,未來需要實驗去做比較。
    研究結果顯示,較大的能量密度因子與能量釋放率皆會發生在材料較弱的裂縫尖端上,而應力強度因子則會發生在材料較強的裂縫尖端上,其強度因子隨著裂縫角度變大而減少,因此裂縫角度對強度因子會有所影響,但其中以非均質材料參數影響甚鉅。

    This dissertation studies the anti-plane crack problem of two bonded functionally graded piezoelectric material (FGPM) strips. Each strip contains an arbitrarily oriented crack. The crack surface condition is assumed to be electrically impermeable or permeable. The piezoelectric material has 6mm symmetry and the material properties of the strips are assumed in exponential forms varied in the direction normal to the interface. After employing the Fourier transforms, the unknowns are solved from the interface conditions, boundary conditions and the condition on the crack surfaces. The problem can then be reduced to a system of singular integral equations, which are solved numerically by applying the Gauss-Chebyshev integration formula to obtain the stress intensity factors at the crack tips. Numerical calculations are carried out to obtain the energy density factor and the energy release rate. The effects of edge boundary conditions, crack lengths, crack orientation, and the non-homogeneous material parameters on the intensity factors, energy density factors (S), and energy release rates (G) are discussed. In addition, some degenerated problems are also discussed.
    In impermeable case, the energy release rate has been shown to be negative as the electric loads are applied. The using of energy release rate criterion for predicting the crack growth is inappropriate because of the energy release rates become negative. The energy density theory becomes a good choice in evaluation the safety of the cracked FGPM. The positive definite characteristic of the energy density factor makes it possible for predicting the fracture behavior of the cracked structure. The influences of the non-homogeneous parameters and crack orientation on the energy density factors at the crack tips are discussed in detail.
    The results show that the energy density factor at the crack tip will be increased when the crack tip is located within the softer material. In general, the factors are larger when crack tips are located in stronger material. Also, the factors increase as the crack is oriented in the direction normal to the interface. The conclusions made in this research can be used to evaluate the safety of two bonded strips once the cracks exist inside the structure.

    摘要 i Abstract ii 誌謝 iii 目錄 iv 表目錄 vi 圖目錄 vi 符號說明 ix 第一章 緒論 1 1-1 前言 1 1-2 文獻回顧 2 1-3 本論文分析問題簡介 7 1-4 本論文架構 7 第二章 基本公式推導與問題描述 9 2-1 壓電材料基本理論 9 2-2 裂縫面邊界條件假設-滲透型與非滲透型 11 2-3 問題描述 12 2-4 統御方程式(governing equations) 14 2-5 疊加法則(superposition technique) 17 2-5-1子問題一-含單一任意方向裂縫全平面在(x1,y1,z1)座標系統 17 2-5-2子問題二-不含裂縫右邊(x>0)條板在(x,y,z)座標系統 20 2-5-3子問題三-含單一任意方向裂縫全平面在(x2,y2,z2)座標系統 21 2-5-4子問題四-不含裂縫左邊(x<0)條板在(x,y,z)座標系統 23 2-5-5子問題之組合 25 2-6 邊界條件與連續條件 29 第三章 奇異積分方程式求解過程與退化問題 31 3-1 邊界條件與連續條件 31 3-2 奇異積分方程式 34 3-3 Fredholm核函數之分析 40 3-4 退化問題 43 3-4-1含雙任意方向裂縫功能梯度壓電材料條板與半平面接合 44 3-4-2含雙任意方向裂縫雙接合功能梯度壓電材料半平面 46 3-4-3含單一任意方向裂縫功能梯度壓電條板與半平面接合 47 3-4-4含雙任意方向裂縫雙接合功能梯度條板 48 第四章 數值運算與破壞準則 50 4-1 奇異積分方程式之求解 50 4-2 應力與電位移強度因子 54 4-3 能量密度因子(energy density factor, S) 57 4-4 能量釋放率(energy release rate, G) 60 第五章 結果與討論 64 5-1 數值收斂分析 64 5-2 退化問題之驗證 66 5-3 含雙任意方向裂縫雙結合功能梯度條板 69 5-4 含雙任意方向裂縫FGPM條板接合半平面FGPM 80 5-5 含雙任意方向裂縫雙結合功能梯度壓電條板 88 第六章 結論 95 參考文獻 98 附錄A Mi(α,t1)與Ni(α,t2)函數 104 附錄B ki1與ki2函數 106 附錄C 未知函數gj(t) 108 附錄 D Chebyshev 多項式 110

    [1] 杨卫,2001。 力电失效学。清华大学出版社,北京市。
    [2] 王保林,韩杰才,张幸红,2003。 非均匀材料力学。科学出版社,北京市。
    [3] Bever, M. B., and Duwez, P. E., 1972. Gradients in composite materials. Materials Science and Engineering 10, 1-8.
    [4] Delale, F., and Erdogan, F., 1983. The crack problem for a non-homogeneous plane. Journal of Applied Mechanics, Transactions ASME 50, 609-614.
    [5] Delale, F., and Erdogan, F., 1988. Interface crack in a non-homogeneous elastic medium. International Journal of Engineering Science 26, 559-568.
    [6] Erdogan, F., Kaya, A.C., Joseph, P. F., 1991. The crack problem in bonded non-homogeneous materials. Transaction of the ASME, Journal of Applied Mechanics 58, 410-418.
    [7] Choi, H. J., 1996. Bonded dissimilar strips with a crack perpendicular to the functionally graded interface. International Journal of Solid and Structures 33, 4101-4117.
    [8] Erdogan, F. 1985. The crack problem for bonded non-homogeneous materials under anti-plane shear loading. Transactions of the ASME, Journal of Applied Mechanics 52, 823-828.
    [9] Erdogan, F., Kaya, A. C., and Joseph, P. F., 1991. The Mode III crack problem in bonded materials with a non-homogeneous interfacial zone. Journal of Applied Mechanics, Transactions ASME 58, 419-427.
    [10] Chen, Y. J., and Chue, C. H., 2009. Mode III crack problems for two bonded functionally graded strips with internal cracks. International Journal of Solids and Structures 46, 331-343.
    [11] Delale, F., 1985. Mode-III fracture of bonded non-homogeneous materials. Engineering Fracture Mechanics 22, 213-226.
    [12] Li, C., 1998. Local stress field for torsion of a penny-shaped crack in a functionally graded material. International Journal of Fracture 91, L17-L22.
    [13] Li, C. and Zou, Z., 1999. Torsional impact response of a functionally graded material with a penny-shaped crack. Transactions of the ASME, Journal of Applied Mechanics 66, 566-567.
    [14] Parameswaran, V. and Shukla, A., 1999. Crack-tip stress fields for dynamic fracture in functionally gradient materials. Mechanics of Materials 31, 579-596.
    [15] Li, C., Weng, G. J., Duan, Z., and Zou, Z., 2001. Dynamic stress intensity factor of a functionally graded material under anti-plane shear loading. Acta Mechanica 149, 1-10.
    [16] Noda, N., 1999. Thermal stresses in functionally graded materials. Journal of Thermal Stresses 22, 477-512.
    [17] Gerasoulis, A. and Srivastav, R. P. 1980. A Griffth crack problem for a non-homogeneous medium. International Journal of Engineering Science 18, 239- 247.
    [18] Atkinson, C. and List, R. D., 1978. Steady state crack propagation into media with spatially varying elastic properties. International Journal of Engineering Science 16, 717-730.
    [19] Noda, N. and Jin, Z. H., 1993. Thermal stress intensity factors for a crack in a strip of a functionally gradient material. International Journal of Solids and Structures 30, 1039-1056.
    [20] Ozturk, M. and Erdogan, F., 1999. The mixed mode problem in an inhomogeneous orthotropic medium. International Journal of Fracture 98, 243-261.
    [21] Chen, J. and Liu, Z. X., 2005. Transient response of a mode III crack in an orthotropic functionally graded strip. European Journal of Mechanics A/Solids 24, 325-336.
    [22] Erdogan, F. and Wu, B. H., 1997. The surface crack problem for a plate with functionally graded properties. Transactions of the ASME, Journal of Applied Mechanics 64, 449-456.
    [23] Chan, Y. S., Paulino, G. H., and Fannjiang, A. C., 2001. The crack problem for non-homogeneous materials under anti-plane shear loading—a displacement based formulation. International Journal of Solids and Structures 38, 2989-3005.
    [24] Erdogan, F., and Aksogan, O., 1974. Bonded half planes containing an arbitrarily oriented crack. International Journal of Solids and Structures 10, 569–585.
    [25] Erdogan, F., and Arin, K., 1975. A half plane and a strip with an arbitrarily located crack. International Journal of Fracture 11, 191–204.
    [26] Konda, N., and Erdogan, F., 1994. Mixed mode crack problem in a non-homogeneous elastic medium. Engineering Fracture Mechanics 47, 533-545.
    [27] Shbeeb, N., Binienda, W. K., and Kreider, K., 2000. Analysis of the driving force for a generally oriented crack in a functionally graded strip sandwiched between two homogeneous half planes. International Journal of Fracture 104, 23-50.
    [28] Choi, H. J., 2001. The problem for bonded half-planes containing a crack at an arbitrary angle to the graded interfacial zone. International Journal of Solids and Structures 38, 6559–6588.
    [29] Long, X., and Delale, F., 2005. The mixed mode crack problem in a FGM layer bonded to a homogeneous half-plane. International Journal of Solids and Structures 42, 3897-3917.
    [30] Long, X., and Delale, F., 2004. The general problem for an arbitrarily oriented crack in a FGM layer. International Journal of Fracture 129, 221-238.
    [31] Theotokoglou, E. E., and Paulino, G. H., 2005. A crack in the homogeneous half plane interacting with a crack at the interface between the non-homogeneous coating and the homogeneous half plane. International Journal of Fracture 134, 11-18.
    [32] Choi, H. J., 2007. Stress intensity factors for an oblique edge crack in a coating/substrate system with a graded interfacial zone under antiplane shear. European Journal of Mechanics, A/Solids 26, 337-347.
    [33] Wang, B. L., and Noda, N., 2001. Thermally induced fracture of a smart functionally graded composite structure. Theoretical and Applied Fracture Mechanics 35, 93-109.
    [34] Li, C., and Weng, G. J., 2002. Anti-plane crack problem in functionally graded piezoelectric materials. Journal of Applied Mechanics, Transactions ASME 69, 481-488.
    [35] Jin, B., and Zhong, Z., 2002. A moving mode-III crack in functionally graded piezoelectric material: Permeable problem. Mechanics Research Communications 29, 217-224.
    [36] Ueda, S., 2003. Crack in functionally graded piezoelectric strip bonded to elastic surface layers under electromechanical loading. Theoretical and Applied Fracture Mechanics 40, 225-236.
    [37] Chue, C. H., and Ou, Y. L., 2005. Mode III crack problems for two bonded functionally graded piezoelectric materials. International Journal of Solids and Structures 42, 3321-3337.
    [38] Chen, J., Liu, Z., and Zou, Z., 2003. The central crack problem for a functionally graded piezoelectric strip. International Journal of Fracture 121, 81-94.
    [39] Jin, B., Sod, A. K., and Zhong, Z., 2003. Propagation of an anti-plane moving crack in a functionally graded piezoelectric strip. Archive of Applied Mechanics 73, 252-260.
    [40] Kwon, S. M., 2004. On the dynamic propagation of an anti-plane shear crack in a functionally graded piezoelectric strip. Acta Mechanica 167, 73-89.
    [41] Ou, Y. L., and Chue, C. H., 2006. Mode III eccentric crack in a functionally graded piezoelectric strip. International Journal of Solids and Structures 43, 6148-6164.
    [42] Ueda, S., 2006. A finite crack in a semi-infinite strip of a graded piezoelectric material under electric loading. European Journal of Mechanics, A/Solids 25, 250-259.
    [43] Yong, H. D., and Zhou, Y. H., 2007. A mode III crack in a functionally graded piezoelectric strip bonded to two dissimilar piezoelectric half-plane. Composite Structures 79, 404-410.
    [44] Hsu, W. H., and Chue, C. H., 2008. Mode III fracture problem of an arbitrarily oriented crack in a FGPM strip bonded to a FGPM half plane. International Journal of Solids and Structures 45, 6333-6346.
    [45] Kwon, S. M. and Lee. K. Y., 2003. An anti-plane propagating crack in a functionally graded piezoelectric strip bonded to a homogeneous piezoelectric strip. Archive of Applied Mechanics 73, 348-366.
    [46] Ueda, S., 2005. Electromechanical response of a center crack in a functionally graded piezoelectric strip. Smart Materials and Structures 14, 1133-1138.
    [47] Ueda, S., 2005. Impact response of a functionally graded piezoelectric plate with a vertical crack. Theoretical and Applied Fracture Mechanics 44, 329-342.
    [48] Sun, J. L., Zhou, Z. G. and Wang, B., 2005. Dynamic behavior of a crack in a functionally graded piezoelectric strip bonded to two dissimilar half piezoelectric material planes. Acta Mechanica 176, 45-60.
    [49] Chen, J., Soh, A. K., Liu, J. and Liu, Z. X., 2004. Transient anti-plane crack problem of a functionally graded piezoelectric strip bonded to elastic layers. Acta Mechanica 169, 87-100.
    [50] Qin, Q. H. and Mai, Y. W., 1998. Multiple cracks in the thermo-electro-elastic biomaterials. Theoretical and Applied Fracture Mechanics 29, 141-150.
    [51] Gao, C. F. and Fan, W. X., 1999. A general solution for the plane problem in piezoelectric media with collinear cracks. International Journal of Engineering Science 37, 347-363.
    [52] Ruys, A. J., Popov, E. B., Sun, D., Russell, J. J. and Murray, C. C. J., 2001. Functionally graded electrical/thermal ceramic systems. Journal of the European Ceramic Society 21, 2025-2029.
    [53] Yamada, K., Sakamura, J-i. and Nakamura, K., 1998. Broadband ultrasound transducers using effectively graded piezoelectric materials. Proceeding of the IEEE Ultrasonics Symposium 2, 1085-1089.
    [54] Pak, Y. E., 1990. Crack extension force in a piezoelectric material. Journal of Applied Mechanics, Transactions ASME 57, 647-653.
    [55] Pak, Y. E., 1992. Linear electro-elastic fracture mechanics of piezoelectric material. International Journal of Fracture 54, 79-100.
    [56] Tong, X. H., Hou, M. S., and Li, Y. K., 2006. Energy release rate and electric effects for piezoelectric media with plane crack. Journal of China University of Petroleum 30, 69-73.
    [57] Yong, H. D., and Zhou, Y. H., 2007. A mode III crack in a functionally graded piezoelectric strip bonded to two dissimilar piezoelectric half-plane. Composite Structures 79, 404-410.
    [58] Gao, H. J., and Zhang, T. Y., and Tong, P., 1997. Local and global energy release rates for an electrically yielded crack in a piezoelectric ceramic. Journal of the Mechanics and Physics of Solids 45 (4), 491-510.
    [59] Spyropoulos, C. P., 2004. Energy release rate and path independent integral study for piezoelectric material with crack. International Journal of Solids and Structures 41, 907-921.
    [60] Sih, G. C., 1973. Some basic problems in fracture mechanics and new concepts. Engineering Fracture Mechanics 5, 365-377.
    [61] Sih, G. C., 1974. Strain-energy-density factor applied to mixed mode crack problems. International Journal of Fracture 10, 305-321.
    [62] Zuo, J. Z., and Sih, G. C., 2000. Energy density theory formulation and interpretation of cracking behavior for piezoelectric ceramics. Theoretical and Applied Fracture Mechanics 34, 17-33.
    [63] Wang, B. L., and Noda, N., 2003. Thermally loaded functionally graded materials with embedded defects. Journal of Thermal Stresses 26, 25-39.
    [64] Lin, S., Narita, F., and Shindo, Y., 2003. Comparison of energy release rate and energy density criteria for a piezoelectric layered composite with a crack normal to interface. Theoretical and Applied Fracture Mechanics 39, 229-243.
    [65] Shen, S., and Nishioka, T., 2000. Fracture of piezoelectric materials: energy density criterion. Theoretical and Applied Fracture Mechanics 33, 57-65.
    [66] Sih, G. C., and Zuo, J. Z., 2000. Multiscale behavior of crack initiation and growth in piezoelectric ceramics. Theoretical and Applied Fracture Mechanics 34, 123–141.
    [67] Chen, J. Z., Liu, X., and Zou, Z. Z., 2003. The central crack problem for a functionally graded piezoelectric strip. International Journal of Fracture 121, 81–94.
    [68] Ikeda, T., 1990. Fundamentals of Piezoelectricity. Oxford University Press, New York.
    [69] Muskhelishvili, N. I., 1953. Singular integral equations. Noordhoff, Groningen, The Netherlands.
    [70] Ou, Y. L., and Chue, C. H., 2006. Two mode III internal crack located within two bonded functionally graded piezoelectric half planes respectively. Archive of Applied Mechanics 75, 364-378.
    [71] Rivlin, T. J., 1974. The Chebyshev polynomials. Wiley, New York.
    [72] Erdogan, F., and Gupta, G. D., 1972. On the numerical solution of singular integral equations. Quarterly of Applied Mathematics 29, 525-534.
    [73] Erdogan, F., Gupta, G. D., and Cook, T. S., 1973. Numerical solution of singular integral equations. In: Sih, G. C. (ed.), Mechanics of Fracture 1: Method of analysis and solution of crack problem, chap 7. Noordhoff International Publishing, Leyden, The Netherlands, 368-425.
    [74] Sih, G. C., 1991. Mechanics of Fracture Initiation and Propagation. Kluwer Academic, Dordrecht, Boston.
    [75] Kanninen, M. F., and Popelar, C. H., 1985. Advance Fracture Mechanics. Oxford University Press, New York.
    [76] Park, S. B., and Sun, C. T., 1995. Fracture criteria for piezoelectric ceramics. Journal of the American Ceramic Society 78(6), 1475-1480.
    [77] Liu, Q., and Chen, Y. H., 2002. Energy analysis for permeable and impermeable cracks in piezoelectric materials. International Journal of Fracture 116, L15-L20.

    下載圖示 校內:立即公開
    校外:2011-08-26公開
    QR CODE