簡易檢索 / 詳目顯示

研究生: 李育燊
Lee, Yu-Shen
論文名稱: 以硫化銅@金奈米顆粒複合於二硫化鉬奈米花並應用於晝夜持續催化有機染料降解之研究
Whole-day responsive photocatalytic degradation of organic dyes using CuS@Au nanoparticles with MoS2 nanoflowers
指導教授: 陳嘉勻
Chen, Chia-Yun
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 74
中文關鍵詞: 二硫化鉬光降解暗降解核殼結構染劑降解
外文關鍵詞: Molybdenum disulfide, photo-catalysis, dark-catalysis, core-shell structure, dyes degradation
相關次數: 點閱:181下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在現今的移除有機汙染物的技術中,光觸媒是一項高效率且備受關注的一項方法,本論文以二硫化鉬(Molybdenum disulfide, MoS2)作為光觸媒基底材料進行後續改質研究以及降解染料實驗。本研究以水熱法製程成功合成奈米花狀二硫化鉬結構,接著使用光化學還原法將金奈米顆粒還原於具有高表面積的二硫化鉬奈米米花表面上,透過異質結構設計與引入表面電漿共振效應,使材料能夠有效利用波長450 nm - 750 nm的入射光。接著,以化學還原法將硫化銅作為外殼沉積在金奈米顆粒表面形成核殼結構(MoS2/Au@CuS),使其發揮硫化銅所具有的類芬頓特性,有利於在黑暗環境下高效地降解有機染料。降解實驗部分通過照射580 nm的光源,MoS2/Au@CuS異質結構表現出高效的降解亞甲基藍染劑的光觸媒能力,而在關閉光源的情況下,染劑溶液仍然可以穩定降解。此外還以開燈/關燈的先後順序及持續時間來模擬日夜變化中光暗輪替的情形,通過探討動力學模型與捕捉劑試驗,研究了相關的光暗降解機制,並且發現開燈/關燈的順序以及時長對降解效率有著決定性的作用。
    本實驗利用SEM、EDS、TEM、XRD、Raman、PL、UV-Vis、FT-IR、XPS以及電化學量測對所合成之奈米複合物的微結構、表面形態、光學特性、鍵結和電化學性質進行了觸媒物化特性分析。經SEM分析,本研究自製之觸媒形成由片狀結構團聚而成的奈米花,且確認了奈米金與硫化銅的附著情形,使用EDS與HRTEM觀察到二硫化鉬具備層狀結構,而金與硫化銅則互相形成核殼結構,以Raman分析位於365 cm-1(E_2g^1)及406 cm-1(A_1g)的峰值出現偏移,表明了複合結構摻雜型態的改變,並以此推算二硫化鉬層數,透過XRD分析硫化參數與晶體結構間的關係,使用PL與UV分析螢光峰值強度變化與可見光吸收峰,說明觸媒材料的能隙變化,接著在FT-IR與XPS中分析產物中存在的分子鍵結以及各元素存在形式,而降解染劑實驗部分則以量測亞甲基藍可見光吸收圖譜變化用以討論觸媒降解能力。

    SUMMARY
    MoS2 has been considered highly potential 2D semiconductor material due to its direct and tunable band gap phenomena which has been widely applied on solar cells, hydrogen evolution and photocatalyst. In this study, Au nanoparticles have been directly on MoS2 nanoflowers with high surface areas, and then CuS layer as shells was deposited on Au surfaces to form a core-shell structures, which enables to absorb light with a wider range of wavelength and facilitates the efficient degradation of organic dyes under dark environment. By irradiating 450 nm of UV light, MoS2/Au@CuS heterostructures demonstrate high photocatalyst ability to degrade Methyl Blue (MB), and the remaining MB solution was kept degraded after turning off the light source. The involved photocatalyst mechanism was examined by kinetic study, scavenger test and microstructural investigations. We found that the light-on/light-off sequence acts as decisive role on the degradation efficiency, which was validated with quantitative kinetic characterizations.
    Key words : Molybdenum disulfide, photo-catalysis, dark-catalysis, core-shell structure, dyes degradation

    中文摘要 I ABSTRACT II 銘謝 XIV 第一章 緒論 1 1.1 前言 1 1.2 研究目的與動機 2 第二章 理論基礎與文獻回顧 3 2.1 光觸媒 3 2.1.1 光觸媒發展簡史 3 2.1.2 光催化基礎原理 4 2.1.3 光觸媒半導體分類 6 2.2 光催化反應理論 8 2.2.1 異相光催化降解反應機制 8 2.2.2 影響光催化反應之參數 11 2.2.3 光催化降解反應動力學 11 2.3 材料簡介 14 2.3.1 改善光觸媒催化效率辦法 14 2.3.2 二硫化鉬簡介 14 2.3.3 奈米金簡介 16 2.3.4 硫化銅簡介 18 第三章 研究方法 20 3.1 實驗流程與介紹 20 3.2 實驗材料與設備 21 3.2.1 實驗藥品 21 3.2.2 製備儀器設備 22 3.2.2.1 電子天秤 (Precision Balances) 22 3.2.2.2 數位型磁石加熱攪拌器 (Hot plate/magnetic stirrer) 22 3.2.2.3 高溫爐(Vacuum Oven) 22 3.2.2.4 超音波震盪機 (Ultrasonic Cleaner) 22 3.2.2.5 光化學反應裝置 (Photoreactor) 23 3.3 製備方法與實驗步驟 23 3.3.1 前驅液製備 23 3.3.2 二硫化鉬奈米花合成 23 3.3.3 二硫化鉬-奈米金 23 3.3.4 二硫化鉬-奈米金-硫化銅 24 3.3.5 有機染劑降解實驗架構 24 3.3.5.1 建立檢量線 24 3.3.5.2 催化降解 25 3.3.5.3 晝/夜持續催化降解 25 3.3.6 晝夜催化機制探討 25 3.4 材料特性分析儀器 26 3.4.1 分析型場發掃描式電子顯微鏡(Analytical field emission scanning electron microscope, AFE-SEM) 26 3.4.2 高解析場發射掃描穿透式電子顯微鏡(Ultrahigh Resolution Field Emission Scanning/ Transmission Electron Microscope, FES/TEM) 27 3.4.3 高溫粉末X光二維廣角繞射儀(High Temperature 2D X-ray Diffractometer, XRD) 27 3.4.4 拉曼光譜儀(Raman spectrometer) 28 3.4.5 傅立葉轉換紅外光光譜儀(Fourier Transform Infrared Spectrometer , FT-IR) 29 3.4.6 紫外光-可見光分光光譜儀(UV-visible spectrometer , UV-VIS) 29 3.4.7 螢光光譜儀(Fluorescence spectrometer, PL) 30 3.4.8 化學分析X射線電子能譜儀(X-ray photoelectron spectroscopy , XPS) 31 第四章 結果與討論 32 4.1 二硫化鉬奈米花與其複合結構與材料特性分析 32 4.1.1 形貌分析: SEM & EDS 32 4.1.2 形貌分析: TEM 35 4.1.3 結構分析: WAGXRD 38 4.1.4 結構分析: 拉曼光譜 40 4.1.5 光學分析: 螢光光譜 42 4.1.6 光學分析: 吸收光譜 43 4.1.7 分子鍵結分析: 傅立葉轉換紅外光譜 45 4.1.8 表面鍵結分析: X射線光電子能譜 46 4.2 觸媒降解有機染劑之研究 49 4.2.1 檢量線 49 4.2.2 催化降解實驗 51 4.2.3 晝夜交替催化降解實驗 55 4.2.4 晝夜催化機制探討 58 4.2.5 觸媒重複性測試 60 第五章 結論 62 參考文獻 64

    1. Long, Zeqing, et al. "Historical development and prospects of photocatalysts for pollutant removal in water." Journal of hazardous materials 395 (2020): 122599.
    2. Chong, Meng Nan, et al. "Recent developments in photocatalytic water treatment technology: a review." Water research 44.10 (2010): 2997-3027.
    3. Kumar, K. Vasanth, K. Porkodi, and A. Selvaganapathi. "Constrain in solving Langmuir–Hinshelwood kinetic expression for the photocatalytic degradation of Auramine O aqueous solutions by ZnO catalyst." Dyes and Pigments 75.1 (2007): 246-249.
    4. Arshad, MK Md, et al. "Current and future envision on developing biosensors aided by 2D molybdenum disulfide (MoS2) productions." Biosensors and Bioelectronics 132 (2019): 248-264.
    5. Chen, Xiaoya, et al. "Biomolecule-assisted hydrothermal synthesis of molybdenum disulfide microspheres with nanorods." Materials Letters 66.1 (2012): 22-24.
    6. Liu, Haiyang, et al. "Synergetic photocatalytic effect between 1 T@ 2H-MoS2 and plasmon resonance induced by Ag quantum dots." Nanotechnology 29.28 (2018): 285402.
    7. Fujishima, Akira, and Kenichi Honda. "Electrochemical photolysis of water at a semiconductor electrode." nature 238.5358 (1972): 37-38.
    8. Müller, Heinrich Dieter, and Friedrich Steinbach. "Decomposition of isopropyl alcohol photosensitized by zinc oxide." Nature 225.5234 (1970): 728-729.
    9. Frank, Steven N., and Allen J. Bard. "Heterogeneous photocatalytic oxidation of cyanide and sulfite in aqueous solutions at semiconductor powders." The journal of physical chemistry 81.15 (1977): 1484-1488.
    10. Yang, You-Hao, et al. "Nanosized cadmium sulfide in polyelectrolyte protected mesoporous sphere: a stable and regeneratable photocatalyst for visible-light-induced removal of organic pollutants." Journal of Photochemistry and Photobiology A: Chemistry 201.2-3 (2009): 111-120.
    11. Hu, Jin‐Song, et al. "Mass production and high photocatalytic activity of ZnS nanoporous nanoparticles." Angewandte Chemie International Edition 44.8 (2005): 1269-1273.
    12. Linsebigler, Amy L., Guangquan Lu, and John T. Yates Jr. "Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results." Chemical reviews 95.3 (1995): 735-758.
    13. Qu, Yongquan, and Xiangfeng Duan. "Progress, challenge and perspective of heterogeneous photocatalysts." Chemical Society Reviews 42.7 (2013): 2568-2580.
    14. Zhang, Fubao, et al. "Recent advances and applications of semiconductor photocatalytic technology." Applied Sciences 9.12 (2019): 2489.
    15. Huang, C. P., Chengdi Dong, and Zhonghung Tang. "Advanced chemical oxidation: its present role and potential future in hazardous waste treatment." Waste management 13.5-7 (1993): 361-377.
    16. Fujishima, Akira, Tata N. Rao, and Donald A. Tryk. "Titanium dioxide photocatalysis." Journal of photochemistry and photobiology C: Photochemistry reviews 1.1 (2000): 1-21.
    17. Wenderich, Kasper, and Guido Mul. "Methods, mechanism, and applications of photodeposition in photocatalysis: a review." Chemical reviews 116.23 (2016): 14587-14619.
    18. Zhang, J., Tian, B., Wang, L., Xing, M., Lei, J. (2018). Heterogeneous Photo-Fenton Technology. In: Photocatalysis. Lecture Notes in Chemistry, vol 100. Springer, Singapore.
    19. Herrmann, Jean-Marie. "Heterogeneous photocatalysis: fundamentals and applications to the removal of various types of aqueous pollutants." Catalysis today 53.1 (1999): 115-129.
    20. H.S. Fogler,Elements of Chemical Reaction Engineering Chapter 10 : Catalysis and Catalytic Reactors,Prentice-Hall PTR Inc (1999): 581–685
    21. Furube, Akihiro, et al. "Direct observation of a picosecond charge separation process in photoexcited platinum-loaded TiO2 particles by femtosecond diffuse reflectance spectroscopy." Chemical physics letters 336.5-6 (2001): 424-430.
    22. Li, Xiaoyun, et al. "Efficient photocatalytic decomposition of perfluorooctanoic acid by indium oxide and its mechanism." Environmental science & technology 46.10 (2012): 5528-5534.
    23. Akpan, Uduak G., and Bassim H. Hameed. "Parameters affecting the photocatalytic degradation of dyes using TiO2-based photocatalysts: a review." Journal of hazardous materials 170.2-3 (2009): 520-529.
    24. Ahmed, Saber, et al. "Influence of parameters on the heterogeneous photocatalytic degradation of pesticides and phenolic contaminants in wastewater: a short review." Journal of environmental management 92.3 (2011): 311-330.
    25. Zhang, Zhibo, et al. "Role of particle size in nanocrystalline TiO2-based photocatalysts." The Journal of Physical Chemistry B 102.52 (1998): 10871-10878.
    26. Kočí, Kamila, et al. "Effect of TiO2 particle size on the photocatalytic reduction of CO2." Applied Catalysis B: Environmental 89.3-4 (2009): 494-502.
    27. Li, Zizhen, Xiangchao Meng, and Zisheng Zhang. "Recent development on MoS2-based photocatalysis: A review." Journal of Photochemistry and Photobiology C: Photochemistry Reviews 35 (2018): 39-55.
    28. Hu, Kun, et al. "The effect of morphology and size on the photocatalytic properties of MoS2." Reaction Kinetics, Mechanisms and Catalysis 100.1 (2010): 153-163.
    29. Kuc, Agnieszka, Nourdine Zibouche, and Thomas Heine. "Influence of quantum confinement on the electronic structure of the transition metal sulfide T S 2." Physical Review B 83.24 (2011): 245213.
    30. Shifu, Chen, and Cao Gengyu. "Photocatalytic degradation of organophosphorus pesticides using floating photocatalyst TiO2· SiO2/beads by sunlight." Solar Energy 79.1 (2005): 1-9.
    31. Singh, H. K., and M. Muneer. "Photodegradation of a herbicide derivative, 2, 4-dichlorophenoxy acetic acid in aqueous suspensions of titanium dioxide." Research on chemical intermediates 30.4 (2004): 317-329.
    32. Wei, Liu, et al. "Titanium dioxide mediated photocatalytic degradation of methamidophos in aqueous phase." Journal of Hazardous materials 164.1 (2009): 154-160.
    33. Fox, Marye Anne, and Maria T. Dulay. "Heterogeneous photocatalysis." Chemical reviews 93.1 (1993): 341-357.
    34. Malato, Sixto, et al. "Decontamination and disinfection of water by solar photocatalysis: recent overview and trends." Catalysis today 147.1 (2009): 1-59.
    35. Li, Zizhen, Xiangchao Meng, and Zisheng Zhang. "Recent development on MoS2-based photocatalysis: A review." Journal of Photochemistry and Photobiology C: Photochemistry Reviews 35 (2018): 39-55.
    36. Hamal, Dambar B., and Kenneth J. Klabunde. "Synthesis, characterization, and visible light activity of new nanoparticle photocatalysts based on silver, carbon, and sulfur-doped TiO2." Journal of Colloid and Interface Science 311.2 (2007): 514-522.
    37. He, Zuoli, and Wenxiu Que. "Molybdenum disulfide nanomaterials: structures, properties, synthesis and recent progress on hydrogen evolution reaction." Applied Materials Today 3 (2016): 23-56.
    38. Liang, Zizhan, et al. "A review on 2D MoS2 cocatalysts in photocatalytic H2 production." Journal of Materials Science & Technology 56 (2020): 89-121.
    39. Radisavljevic, Branimir, et al. "Single-layer MoS2 transistors." Nature nanotechnology 6.3 (2011): 147-150.
    40. Yuan, Yong‐Jun, et al. "Noble‐metal‐free molybdenum disulfide cocatalyst for photocatalytic hydrogen production." ChemSusChem 8.24 (2015): 4113-4127.
    41. Hu, Kun, et al. "The effect of morphology and size on the photocatalytic properties of MoS2." Reaction Kinetics, Mechanisms and Catalysis 100.1 (2010): 153-163.
    42. Marchelek, Martyna, et al. "KTaO3-based nanocomposites for air treatment." Catalysis Today 252 (2015): 47-53.
    43. Rong, Yang, et al. "A new visible-light driving nanocomposite photocatalyst Er3+: Y3Al5O12/MoS2–NaTaO3–PdS for photocatalytic degradation of a refractory pollutant with potentially simultaneous hydrogen evolution." RSC Advances 6.84 (2016): 80595-80603.
    44. Tsai, Meng-Lin, et al. "Monolayer MoS2 heterojunction solar cells." ACS nano 8.8 (2014): 8317-8322.
    45. Arshad, MK Md, et al. "Current and future envision on developing biosensors aided by 2D molybdenum disulfide (MoS2) productions." Biosensors and Bioelectronics 132 (2019): 248-264.
    46. Weller, Horst. "Optical properties of quantized semiconductor particles." Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences 354.1708 (1996): 757-766.
    47. Liu, S. X., et al. "A mechanism for enhanced photocatalytic activity of silver-loaded titanium dioxide." Catalysis Today 93 (2004): 877-884.
    48. Khan, Maksudur R., et al. "Schottky barrier and surface plasmonic resonance phenomena towards the photocatalytic reaction: study of their mechanisms to enhance photocatalytic activity." Catalysis Science & Technology 5.5 (2015): 2522-2531.
    49. Primo, Ana, Avelino Corma, and Hermenegildo García. "Titania supported gold nanoparticles as photocatalyst." Physical Chemistry Chemical Physics 13.3 (2011): 886-910.
    50. Chiarello, Gian Luca, Elena Selli, and Lucio Forni. "Photocatalytic hydrogen production over flame spray pyrolysis-synthesised TiO2 and Au/TiO2." Applied Catalysis B: Environmental 84.1-2 (2008): 332-339.
    51. Rengaraj, S., and X. Z. Li. "Enhanced photocatalytic activity of TiO2 by doping with Ag for degradation of 2, 4, 6-trichlorophenol in aqueous suspension." Journal of Molecular Catalysis A: Chemical 243.1 (2006): 60-67.
    52. Ou, Hsin-Hung, and Shang-Lien Lo. "Effect of Pt/Pd-doped TiO2 on the photocatalytic degradation of trichloroethylene." Journal of Molecular Catalysis A: Chemical 275.1-2 (2007): 200-205.
    53. Zhang, Xuming, et al. "Plasmonic photocatalysis." Reports on Progress in Physics 76.4 (2013): 046401.
    54. Ye, Wei, et al. "Plasmonic nanostructures in solar energy conversion." Journal of Materials Chemistry C 5.5 (2017): 1008-1021.
    55. Zhang, Longshuai, et al. "Localized surface plasmon resonance enhanced photocatalytic hydrogen evolution via Pt@ Au NRs/C3N4 nanotubes under visible‐light irradiation." Advanced Functional Materials 29.3 (2019): 1806774.
    56. Roy, Poulomi, and Suneel Kumar Srivastava. "Nanostructured copper sulfides: synthesis, properties and applications." CrystEngComm 17.41 (2015): 7801-7815.
    57. Ma, Youliang, et al. "Concerted catalytic and photocatalytic degradation of organic pollutants over CuS/g-C3N4 catalysts under light and dark conditions." Journal of advanced research 16 (2019): 135-143.
    58. Raj, S. Irudhaya, and Adhish Jaiswal. "Nanoscale transformation in CuS Fenton-like catalyst for highly selective and enhanced dye degradation." Journal of Photochemistry and Photobiology A: Chemistry 410 (2021): 113158.
    59. Yoo, Jae-Hyun, et al. "Facile synthesis of hierarchical CuS microspheres with high visible-light-driven photocatalytic activity." Journal of Photochemistry and Photobiology A: Chemistry 401 (2020): 112782.
    60. Raj, S. Irudhaya, Adhish Jaiswal, and Imran Uddin. "Ultrasmall aqueous starch-capped CuS quantum dots with tunable localized surface plasmon resonance and composition for the selective and sensitive detection of mercury (ii) ions." RSC advances 10.24 (2020): 14050-14059.
    61. Muthalif, Mohammed Panthakkal Abdul, Chozhidakath Damodharan Sunesh, and Youngson Choe. "Improved photovoltaic performance of quantum dot-sensitized solar cells based on highly electrocatalytic Ca-doped CuS counter electrodes." Journal of Photochemistry and Photobiology A: Chemistry 358 (2018): 177-185.
    62. Fenton, Henry John Horstman. "LXXIII.—Oxidation of tartaric acid in presence of iron." Journal of the Chemical Society, Transactions 65 (1894): 899-910.
    63. Nidheesh, Puthiya Veetil, Rajan Gandhimathi, and Srikrishnaperumal Thanga Ramesh. "Degradation of dyes from aqueous solution by Fenton processes: a review." Environmental Science and Pollution Research 20.4 (2013): 2099-2132.
    64. Bokare, Alok D., and Wonyong Choi. "Review of iron-free Fenton-like systems for activating H2O2 in advanced oxidation processes." Journal of hazardous materials 275 (2014): 121-135.
    65. Zhang, Ailing, Xing Huang, and Zhaodong Nan. "Facile synthesis of 3D-structured NiS as an excellent Fenton-like catalyst under various pH through different mechanisms." Inorganic Chemistry 58.20 (2019): 14136-14144.
    66. Zhang, Mai, et al. "Multiwalled carbon nanotube-supported CuCo 2 S 4 as a heterogeneous Fenton-like catalyst with enhanced performance." RSC advances 7.34 (2017): 20724-20731.
    67. Yu, Kaifeng, et al. "BiFeO3/MoS2 nanocomposites with the synergistic effect between≡ MoVI/≡ MoIV and≡ FeIII/≡ FeII redox cycles for enhanced Fenton-like activity." Colloids and Surfaces A: Physicochemical and Engineering Aspects 578 (2019): 123607.
    68. Xie, Junfeng, et al. "Defect‐rich MoS2 ultrathin nanosheets with additional active edge sites for enhanced electrocatalytic hydrogen evolution." Advanced materials 25.40 (2013): 5807-5813.
    69. Cho, Soo-Yeon, et al. "Tunable volatile-organic-compound sensor by using Au nanoparticle incorporation on MoS2." ACS sensors 2.1 (2017): 183-189.
    70. Singha, Shib Shankar, et al. "Au nanoparticles functionalized 3D-MoS2 nanoflower: An efficient SERS matrix for biomolecule sensing." Biosensors and Bioelectronics 119 (2018): 10-17.
    71. Chiu, Yi-Hsuan, and Yung-Jung Hsu. "Au@Cu7S4 yolk@ shell nanocrystal-decorated TiO2 nanowires as an all-day-active photocatalyst for environmental purification." Nano Energy 31 (2017): 286-295.
    72. Kuo, Kuan-Yi, et al. "Day-night active photocatalysts obtained through effective incorporation of Au@ CuxS nanoparticles onto ZnO nanowalls." Journal of Hazardous Materials 421 (2022): 126674.
    73. Hussein, Jihan, et al. "The efficiency of blackberry loaded AgNPs, AuNPs and Ag@ AuNPs mediated pectin in the treatment of cisplatin-induced cardiotoxicity in experimental rats." International Journal of Biological Macromolecules 159 (2020): 1084-1093.
    74. Zhang, Hongdan, et al. "Synthesis and characterization of multipod frameworks of Cu2O microcrystals and Cu7S4 hollow microcages." CrystEngComm 17.21 (2015): 3908-3911.
    75. Sun, Shaodong, et al. "Formation of hierarchically polyhedral Cu7S4 cages from Cu2O templates and their structure-dependent photocatalytic performances." New Journal of Chemistry 37.11 (2013): 3679-3684.
    76. Liu, Chengbin, et al. "Vertical single or few-layer MoS2 nanosheets rooting into TiO2 nanofibers for highly efficient photocatalytic hydrogen evolution." Applied Catalysis B: Environmental 164 (2015): 1-9.
    77. Sun, Kaige, et al. "Synergistic effect in the reduction of Cr (VI) with Ag-MoS2 as photocatalyst." Applied Materials Today 18 (2020): 100453.
    78. Zhang, Sai, et al. "Synthesis of gold nanoparticles coated on flower-like MoS2 microsphere and their application for electrochemical nitrite sensing." Journal of Electroanalytical Chemistry 839 (2019): 195-201.
    79. Zou, Yanqiu, et al. "Surface-enhanced Raman scattering by hierarchical CuS microflowers: Charge transfer and electromagnetic enhancement." Journal of Alloys and Compounds 865 (2021): 158919.
    80. Hurma, Tülay, and S. Kose. "XRD Raman analysis and optical properties of CuS nanostructured film." Optik 127.15 (2016): 6000-6006.
    81. Lee, Changgu, et al. "Anomalous lattice vibrations of single-and few-layer MoS2." ACS nano 4.5 (2010): 2695-2700.
    82. Sreeprasad, T. S., et al. "Controlled, defect-guided, metal-nanoparticle incorporation onto MoS2 via chemical and microwave routes: electrical, thermal, and structural properties." Nano letters 13.9 (2013): 4434-4441.
    83. Ali, Asad, et al. "Ultrathin MoS2 nanosheets for high-performance photoelectrochemical applications via plasmonic coupling with Au nanocrystals." Nanoscale 11.16 (2019): 7813-7824.
    84. Shi, Yumeng, et al. "Selective decoration of Au nanoparticles on monolayer MoS2 single crystals." Scientific reports 3.1 (2013): 1-7.
    85. Chen, Pei, et al. "MoS2 nanoflowers decorated with Au nanoparticles for visible-light-enhanced gas sensing." ACS Applied Nano Materials 4.6 (2021): 5981-5991.
    86. Cathcart, Nicole, Jennifer IL Chen, and Vladimir Kitaev. "LSPR tuning from 470 to 800 nm and improved stability of Au–Ag nanoparticles formed by gold deposition and rebuilding in the presence of poly (styrenesulfonate)." Langmuir 34.2 (2018): 612-621.
    87. Rahmati, B., et al. "Plasmonic improvement photoresponse of vertical-MoS2 nanostructure photodetector by Au nanoparticles." Applied Surface Science 490 (2019): 165-171.
    88. Chen, Zhengrun, et al. "Good triethylamine sensing properties of Au@ MoS2 nanostructures directly grown on ceramic tubes." Materials Chemistry and Physics 245 (2020): 122683.
    89. Schneider, Jéssica Tamara, et al. "Use of scavenger agents in heterogeneous photocatalysis: truths, half-truths, and misinterpretations." Physical Chemistry Chemical Physics 22.27 (2020): 15723-15733.
    90. Xi, Jianfeng, et al. "Dependence of laser parameters on structural properties of pulsed laser-deposited MoS2 thin films applicable for field effect transistors." Journal of Materials Science: Materials in Electronics 31.23 (2020): 21118-21127.
    91. Karikalan, Natarajan, et al. "Sonochemical synthesis of sulfur doped reduced graphene oxide supported CuS nanoparticles for the non-enzymatic glucose sensor applications." Scientific reports 7.1 (2017): 1-10.
    92. Hayez, Valerie, et al. "XPS study of the atmospheric corrosion of copper alloys of archaeological interest." Surface and Interface Analysis: An International Journal devoted to the development and application of techniques for the analysis of surfaces, interfaces and thin films 36.8 (2004): 876-879.
    93. Zheng, Xiaoli, et al. "Building a lateral/vertical 1T-2H MoS2/Au heterostructure for enhanced photoelectrocatalysis and surface enhanced Raman scattering." Journal of Materials Chemistry A 7.34 (2019): 19922-19928.

    無法下載圖示 校內:2028-03-01公開
    校外:2028-03-01公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE