簡易檢索 / 詳目顯示

研究生: 姚蕙雯
Yao, Hui-Wen
論文名稱: 單純疱疹病毒第一型在腦部的復發決定於病毒毒力與宿主耐受性
The reactivation of HSV-1 from latently infected mouse brains is dependent on viral virulence and host susceptibility
指導教授: 陳舜華
Chen, Shun-Hua
學位類別: 碩士
Master
系所名稱: 醫學院 - 微生物及免疫學研究所
Department of Microbiology & Immunology
論文出版年: 2005
畢業學年度: 93
語文別: 英文
論文頁數: 43
中文關鍵詞: 復發病毒毒力宿主耐受性單純疱疹病毒第一型
外文關鍵詞: susceptibility, virulence, HSV-1, reactivation
相關次數: 點閱:164下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   根據血清學的調查結果發現,全世界的成年人口中有百分之九十曾經受到單純疱疹病毒第一型的感染。  另外,利用PCR的方式而在高達百分之八十的癲癇或多發性硬化症患者腦部的檢體可發現有單純疱疹病毒的DNA存在,此比例遠高於沒有神經性疾病的族群(約34-50%)。  除此之外,單純疱疹病毒在腦部的潛伏性感染可能與老人癡呆症也就是阿茲海默症的發展有關。  然而,在廣大的感染族群中,只有部分的人會遭遇病毒在腦部產生復發進而造成神經性疾病。  因此,釐清究竟是哪些因子決定病毒是否在腦部產生復發成為一個探討單純疱疹病毒與腦部神經性疾病之間關係的重要課題。  在本篇研究中,我們利用四種不同的病毒株,分別為KOS、RE、294.1和McKrae,以及三種不同品系的老鼠,分別為ICR、BALB/c和C57BL/6來探討病毒毒力及宿主的耐受性是否會影響病毒在腦部復發的比例和機制。  我們觀察到具有高毒性的病毒株,如294.1和McKrae,較容易在老鼠的腦部發生復發。  因為,高毒性病毒株可以在老鼠體內有較長的急性感染期並儲存較多的病毒DNA在老鼠的腦組織中。  而弱毒性病毒株,例如KOS和RE,在感染老鼠後進行的急性感染期較短,建立的潛伏性感染也較差。  此外,不同品系的老鼠在感染的耐受性、病毒的複製和潛伏期的建立等方面有程度上的差異,進而影響病毒在腦部復發的比例。  在本篇研究中,我們發現對病毒可以在較敏感的老鼠品系,如ICR和BALB/c,有較高比率的腦部復發,歸因於病毒有良好的急性期複製與潛伏期的建立。  總結本篇研究,我們發現單純疱疹病毒在腦部的復發會受到病毒毒力以及宿主耐受性差異的影響。  此結果將提供了日後探討單純疱疹病毒在腦部復發與腦部神經性疾病關聯性的研究基礎。

     Around 34-50% of humans have herpes simplex virus type I (HSV-1) genomes in their brains, but only a fraction of this population experiences viral reactivation in the brains.  Why some individuals experience viral reactivation from latently infected brains and how virus contributes to this process need to be clarified.  In this study, we systematically investigated the contribution of both viral and host factors to HSV-1 reactivation from latently infected mouse brain stems.  Four HSV-1 strains varied in their virulence were used to study the role of viral factor in HSV-1 reactivation from latently infected brain stems.  We observed that viral strains with high virulence, such as 294.1 and McKrae, replicated longer in the brain during acute phase, deposited more viral genomes in the brain during latency, and subsequently reactivated from latently infected mouse brain stems with higher frequencies than avirulent strains, RE and KOS.  Meanwhile, three mouse strains varied in their susceptibility to HSV-1 infection.  ICR mice were most susceptible followed by BALB/c and then C57BL/6 mice.  So these three strains of mice were used to examine the role of host factor in HSV-1 reactivation from latently infected brain stems.  We demonstrated that the reactivation rate was correlated with the susceptibilities of mouse strains to viral infection.  Our results indicated that both viral and host factors influence the reactivation of HSV-1 from latently infected brains.  This study might provide foundation for future studies on HSV-1 reactivation from the brain to cause recurrent infections in humans with neurological diseases.

    Contents Chinese abstract..........i English abstract..........ii Acknowledgements..........iii Contents..................iv Table contents............v Figure contents...........vi Introduction..............01 Material and methods......06 Results...................10 Discussion................17 References................22 Tables....................27 Figures...................30

    References
    1. Roizman, B. & Pellett, P.E. The family herpesviridae: A brief introduction. in Fields Virology, Vol. 2 (eds. Knipe, D.M. et al.) 2381-2398 (Lippincott Williams & Wilkins, Philadelphia, 2001).
    2. Roizman, B. & Knipe, D.M. Herpes simplex viruses and their replication. in Fields Virology, Vol. 2 (eds. Knipe, D.M. et al.) 2399-2459 (Lippincott Williams & Wilkins, Philadelphia, 2001).
    3. Whitley, R.J. Herpes simplex viruses. in Fields Virology, Vol. 2 (eds. Knipe, D.M. et al.) 2461-2510 (Lippincott Williams & Wilkins, Philadelphia, 2001).
    4. Stevens, J.G., Wagner, E.K., Devi-Rao, G.B., Cook, M.L. & Feldman, L.T. RNA complementary to a herpesvirus alpha gene mRNA is prominent in latently infected neurons. Science 235, 1056-9 (1987).
    5. Wentworth, B.B. & Alexander, E.R. Seroepidemiology of infectious due to members of the herpesvirus group. Am. J. Epidemiol. 94, 496-507 (1971).
    6. Stevens, J.G. & Cook, M.L. Latent herpes simplex virus in spinal ganglia of mice. Science 173, 843-5 (1971).
    7. Schmutzhard, E. Viral infections of the CNS with special emphasis on herpes simplex infections. J. Neurol. 248, 469-77 (2001).
    8. Fraser, N.W., Lawrence, W.C., Wroblewska, Z., Gilden, D.H. & Koprowski, H. Herpes simplex type 1 DNA in human brain tissue. Proc. Natl. Acad. Sci. U. S. A. 78, 6461-5 (1981).
    9. Sanders, V.J. et al. Presence of herpes simplex DNA in surgical tissue from human epileptic seizure foci detected by polymerase chain reaction: preliminary study. Arch. Neurol. 54, 954-60 (1997).
    10. Sanders, V.J. et al. Herpes simplex virus in postmortem multiple sclerosis brain tissue. Arch. Neurol. 53, 125-33 (1996).
    11. Sanders, V.J., Felisan, S., Waddell, A. & Tourtellotte, W.W. Detection of herpesviridae in postmortem multiple sclerosis brain tissue and controls by polymerase chain reaction. J. Neurovirol. 2, 249-58 (1996).
    12. Hemling, N. et al. Herpesviruses in brains in Alzheimer's and Parkinson's diseases. Ann. Neurol. 54, 267-71 (2003).
    13. Itzhaki, R. Herpes simplex virus type 1, apolipoprotein E and Alzheimer' disease. Herpes 11 Suppl 2, 77A-82A (2004).
    14. Itzhaki, R.F. Possible factors in the etiology of Alzheimer's disease. Mol. Neurobiol. 9, 1-13 (1994).
    15. Itzhaki, R.F. et al. Herpes simplex virus type 1 in brain and risk of Alzheimer's disease. Lancet 349, 241-4 (1997).
    16. Itzhaki, R.F. & Wozniak, M.A. Alzheimer's disease, the neuroimmune axis, and viral infection. J. Neuroimmunol. 156, 1-2 (2004).
    17. Mori, I. et al. Reactivation of HSV-1 in the brain of patients with familial Alzheimer's disease. J. Med. Virol. 73, 605-11 (2004).
    18. Abghari, S.Z. & Stulting, R.D. Recovery of herpes simplex virus from ocular tissues of latently infected inbred mice. Invest. Ophthalmol. Vis. Sci. 29, 239-43 (1988).
    19. Ellison, A.R., Yang, L., Voytek, C. & Margolis, T.P. Establishment of latent herpes simplex virus type 1 infection in resistant, sensitive, and immunodeficient mouse strains. Virology 268, 17-28 (2000).
    20. Perng, G.C., Slanina, S.M., Ghiasi, H., Nesburn, A.B. & Wechsler, S.L. The effect of latency-associated transcript on the herpes simplex virus type 1 latency-reactivation phenotype is mouse strain-dependent. J. Gen. Virol. 82, 1117-22 (2001).
    21. Thompson, R.L. & Sawtell, N.M. The herpes simplex virus type 1 latency-associated transcript gene regulates the establishment of latency. J. Virol. 71, 5432-40 (1997).
    22. Strelow, L.I. et al. A structural and functional comparison of the latency-associated transcript promoters of herpes simplex virus type 1 strains KOS and McKrae. J. Gen. Virol. 75 ( Pt 9), 2475-80 (1994).
    23. Perng, G.C. et al. A herpes simplex virus type 1 latency-associated transcript mutant with increased virulence and reduced spontaneous reactivation. J. Virol. 73, 920-9 (1999).
    24. Sawtell, N.M., Poon, D.K., Tansky, C.S. & Thompson, R.L. The latent herpes simplex virus type 1 genome copy number in individual neurons is virus strain specific and correlates with reactivation. J. Virol. 72, 5343-50 (1998).
    25. Sawtell, N.M. & Thompson, R.L. Rapid in vivo reactivation of herpes simplex virus in latently infected murine ganglionic neurons after transient hyperthermia. J. Virol. 66, 2150-6 (1992).
    26. Hill, J.M., Rayfield, M.A. & Haruta, Y. Strain specificity of spontaneous and adrenergically induced HSV-1 ocular reactivation in latently infected rabbits. Curr. Eye. Res. 6, 91-7 (1987).
    27. Cantin, E.M. et al. Expression of herpes simplex virus 1 glycoprotein B by a recombinant vaccinia virus and protection of mice against lethal herpes simplex virus 1 infection. Proc. Natl. Acad. Sci. U. S. A. 84, 5908-12 (1987).
    28. Kramer, M.F. & Coen, D.M. Quantification of transcripts from the ICP4 and thymidine kinase genes in mouse ganglia latently infected with herpes simplex virus. J. Virol. 69, 1389-99 (1995).
    29. Katz, J.P., Bodin, E.T. & Coen, D.M. Quantitative polymerase chain reaction analysis of herpes simplex virus DNA in ganglia of mice infected with replication-incompetent mutants. J. Virol. 64, 4288-95 (1990).
    30. Leib, D.A. et al. Immediate-early regulatory gene mutants define different stages in the establishment and reactivation of herpes simplex virus latency. J. Virol. 63, 759-68 (1989).
    31. Sawtell, N.M. & Thompson, R.L. Herpes simplex virus type 1 latency-associated transcription unit promotes anatomical site-dependent establishment and reactivation from latency. J. Virol. 66, 2157-69 (1992).
    32. Cai, W. et al. The herpes simplex virus type 1 regulatory protein ICP0 enhances virus replication during acute infection and reactivation from latency. J. Virol. 67, 7501-12 (1993).
    33. Izumi, K.M. & Stevens, J.G. Molecular and biological characterization of a herpes simplex virus type 1 (HSV-1) neuroinvasiveness gene. J. Exp. Med. 172, 487-96 (1990).
    34. Weise, K., Kaerner, H.C., Glorioso, J. & Schroder, C.H. Replacement of glycoprotein B gene sequences in herpes simplex virus type 1 strain ANG by corresponding sequences of the strain KOS causes changes of plaque morphology and neuropathogenicity. J. Gen. Virol. 68 ( Pt 7), 1909-19 (1987).
    35. Campadelli-Fiume, G. et al. Glycoprotein C-dependent attachment of herpes simplex virus to susceptible cells leading to productive infection. Virology 178, 213-22 (1990).
    36. Yuhasz, S.A. & Stevens, J.G. Glycoprotein B is a specific determinant of herpes simplex virus type 1 neuroinvasiveness. J. Virol. 67, 5948-54 (1993).
    37. Stevens, J.G. HSV-1 neuroinvasiveness. Intervirology 35, 152-63 (1993).
    38. Day, S.P., Lausch, R.N. & Oakes, J.E. Nucleotide sequences important in DNA replication are responsible for differences in the capacity of two herpes simplex virus strains to spread from cornea to central nervous system. Curr. Eye Res. 6, 19-26 (1987).
    39. Pelosi, E., Rozenberg, F., Coen, D.M. & Tyler, K.L. A herpes simplex virus DNA polymerase mutation that specifically attenuates neurovirulence in mice. Virology 252, 364-72 (1998).
    40. O'Neil, J.E. et al. Wide variations in herpes simplex virus type 1 inoculum dose and latency-associated transcript expression phenotype do not alter the establishment of latency in the rabbit eye model. J. Virol. 78, 5038-44 (2004).
    41. Cassady, K.A., Gross, M., Gillespie, G.Y. & Roizman, B. Second-site mutation outside of the U(S)10-12 domain of Deltagamma(1)34.5 herpes simplex virus 1 recombinant blocks the shutoff of protein synthesis induced by activated protein kinase R and partially restores neurovirulence. J. Virol. 76, 942-9 (2002).
    42. Zhu, J. et al. Identification of a novel 0.7-kb polyadenylated transcript in the LAT promoter region of HSV-1 that is strain specific and may contribute to virulence. Virology 265, 296-307 (1999).
    43. Perng, G.C. et al. The latency-associated transcript gene enhances establishment of herpes simplex virus type 1 latency in rabbits. J. Virol. 74, 1885-91 (2000).
    44. Perng, G.C. et al. The latency-associated transcript gene of herpes simplex virus type 1 (HSV-1) is required for efficient in vivo spontaneous reactivation of HSV-1 from latency. J. Virol. 68, 8045-55 (1994).
    45. Leib, D.A. et al. A deletion mutant of the latency-associated transcript of herpes simplex virus type 1 reactivates from the latent state with reduced frequency. J. Virol. 63, 2893-900 (1989).
    46. Lopez, C. Genetics of natural resistance to herpesvirus infections in mice. Nature 258, 152-3 (1975).
    47. Scalzo, A.A., Fitzgerald, N.A., Simmons, A., La Vista, A.B. & Shellam, G.R. Cmv-1, a genetic locus that controls murine cytomegalovirus replication in the spleen. J. Exp. Med. 171, 1469-83 (1990).
    48. Sarmiento, M. Intrinsic resistance to viral infection. Mouse macrophage restriction of herpes simplex virus replication. J. Immunol. 141, 2740-8 (1988).
    49. Lee, S.H. et al. Susceptibility to mouse cytomegalovirus is associated with deletion of an activating natural killer cell receptor of the C-type lectin superfamily. Nat. Genet. 28, 42-5 (2001).
    50. Forbes, C.A. et al. The Cmv1 host resistance locus is closely linked to the Ly49 multigene family within the natural killer cell gene complex on mouse chromosome 6. Genomics 41, 406-13 (1997).
    51. Lee, S.H. et al. Transgenic expression of the activating natural killer receptor Ly49H confers resistance to cytomegalovirus in genetically susceptible mice. J. Exp. Med. 197, 515-26 (2003).
    52. Daniels, K.A. et al. Murine cytomegalovirus is regulated by a discrete subset of natural killer cells reactive with monoclonal antibody to Ly49H. J. Exp. Med. 194, 29-44 (2001).
    53. Scalzo, A.A. et al. The effect of the Cmv-1 resistance gene, which is linked to the natural killer cell gene complex, is mediated by natural killer cells. J. Immunol. 149, 581-9 (1992).
    54. Zawatzky, R., Gresser, I., DeMaeyer, E. & Kirchner, H. The role of interferon in the resistance of C57BL/6 mice to various doses of herpes simplex virus type 1. J. Infect. Dis. 146, 405-10 (1982).
    55. Quinnan, G.V., Jr. & Manischewitz, J.F. Genetically determined resistance to lethal murine cytomegalovirus infection is mediated by interferon-dependent and -independent restriction of virus replication. J. Virol. 61, 1875-81 (1987).
    56. Chaudhri, G. et al. Polarized type 1 cytokine response and cell-mediated immunity determine genetic resistance to mousepox. Proc. Natl. Acad. Sci. U. S. A. 101, 9057-62 (2004).
    57. Lathbury, L.J., Allan, J.E., Shellam, G.R. & Scalzo, A.A. Effect of host genotype in determining the relative roles of natural killer cells and T cells in mediating protection against murine cytomegalovirus infection. J. Gen. Virol. 77 ( Pt 10), 2605-13 (1996).
    58. He, X., Yoshida, H., Minamishima, Y. & Nomoto, K. Analysis of the role of CD4+ T-cells during murine cytomegalovirus infection in different strains of mice. Virus Res. 36, 233-45 (1995).
    59. Lundberg, P. et al. A locus on mouse chromosome 6 that determines resistance to herpes simplex virus also influences reactivation, while an unlinked locus augments resistance of female mice. J. Virol. 77, 11661-73 (2003).
    60. Mitchell, W.J., De Santo, R.J., Zhang, S.D., Odenwald, W.F. & Arnheiter, H. Herpes simplex virus pathogenesis in transgenic mice is altered by the homeodomain protein Hox 1.3. J. Virol. 67, 4484-91 (1993).
    61. Galle, L.E., Taus, N.S., Maggs, D.J., Moore, C.P. & Mitchell, W.J. Increased severity of herpes simplex virus type 1-induced keratitis in Hox A5 transgenic mice. Curr. Eye Res. 23, 435-42 (2001).

    下載圖示 校內:2006-08-24公開
    校外:2006-08-24公開
    QR CODE