| 研究生: |
蔡星汶 Tsai, Hsing-Wen |
|---|---|
| 論文名稱: |
圓柱表面流場在臨界區之空氣動力實驗研究 Experimental Investigations of Flows Around Circular Cylinders in the Critical Regime. |
| 指導教授: |
苗君易
Miau, Jiun-Jih |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
| 論文出版年: | 2006 |
| 畢業學年度: | 94 |
| 語文別: | 中文 |
| 論文頁數: | 102 |
| 中文關鍵詞: | 小波轉換 、再回覆 、分離泡 、臨界區 |
| 外文關鍵詞: | separation bubble, reattachment, wavelet transformation, critical regime |
| 相關次數: | 點閱:115 下載:5 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究以實驗方式探討圓柱表面流場在雷諾數為1.73×10^5~5.86×10^5間的空氣動力特性。實驗首先量測臨界區中,基部壓力隨雷諾數之變化情形,再利用圓柱左右兩側±900位置的擾動壓力係數來判斷圓柱流場進入單分離泡區的最低雷諾數,如此一來,即定義出圓柱流場在預臨界區、單分離泡區及雙分離泡區中,雷諾數分布的範圍。
在瞭解各子區域的雷諾數範圍後,選定四組雷諾數以量測各個子區域內圓柱表面的壓力分布情形,再藉由油流實驗進行視流觀察,並與實驗量測之結果相互比對,成功地找出流動分離及再回覆現象發生的位置,並利用量測所得的壓力分布,以積分方法計算出圓柱在臨界區中的升、阻力係數。
至於瞬時頻率的分析,藉由小波轉換進行數據處理,吾人得以在預臨界區中層流分離發生的位置,解析出壓力訊號中夾帶的瞬時溢放頻率,此分析方法貢獻了快速富立葉轉換無法提供的瞬時資訊;而在單分離泡形成之初,圓柱表面的溢放訊號呈不連續分布且劇烈振盪,此乃溢放行為與分離泡之形成產生交互作用所致,分離泡發生前後,流場中會出現兩溢放主頻。
最後,亦可藉此實驗研究之結果對風洞進行性能驗證,以進一步證實風洞的流場品質符合原先設計之要求。
In this study, we investigated the aerodynamic characteristics of the flows around circular cylinders at Reynolds numbers 1.73×10^5~5.86×10^5. First of all, the base pressures across the critical regime were measured, therefore the relation between base-pressure coefficient and Reynolds number was reduced. Then, we determined the lowest Reynolds number at which the flow field entered the one-bubble regime by comparing the root-mean-square values of the pressure coefficients on two sides of a cylinder. In this way, all the sub-regimes in the critical regime were classified.
After the ranges of Reynolds number in each of the sub-regimes had been confirmed, the pressure distributions around circular cylinders at four specific Reynolds numbers were measured. By comparing the results of oil-flow visualization with the pressure measurements, the positions where laminar/turbulent separation and reattachment took place were successfully identified. Subsequently, the lift and drag coefficients by integrating the pressure distributions on the surface of circular cylinders were made.
We analyzed the instantaneous behavior of vortex shedding by processing the measured data with wavelet transformation. This method offers instantaneous information that fast Fourier transformation can not provide. At the Reynolds number near lower end of one bubble regime, the unsteadiness of a bubble causes the instantaneous frequency of vortex shedding to vary discontinuously and fluctuate violently.
At last, by comparing the above results with references, the flow quality of the ABRI wind tunnel was verified.
[1]Miau, J. J., Chou, J. H., Cheng, C. M., Chu, C. R., Woo, K. C., Ren, S. K., Chen, Z. L., Hu, C. C. & Chen, J. L.,“ Design Aspects of the ABRI Wind Tunnel”, The International Wind Engineering Symposium, Taipei County, Taiwan, 2003.
[2]高義明,內政部建研所環境風洞校驗及二維鈍形體空氣動力流場實驗研究,成大航太所碩士論文,2005。
[3]Prandtl, L., “Motion of Fluid with Very Little Viscosity”, NACA TM No.452, 1928.
[4]Schlichting, H., “Boundary-Layer Theory”, McGRAW-HILL, New-York, 1975.
[5]Zdravkovich, M. M., Flow Around Circular Cylinders, Vol.1: Fundamentals, Oxford University Press, 1997.
[6]Zdravkovich, M. M., “Conceptual Overview of Laminar and Turbulent Flows past Smooth and Rough Circular Cylinders”, Journal of Wind Engineering and Industrial Aerodynamics, Vol.33, pp.53-62, 1990.
[7]Wieselsberger, C., “New Data on the Law of Hydro and Aerodynamics Resistance”, Physikalsche Zeitschrift, Vol.22, pp.321-328, 1922.
[8]Roshko, A., “Experiments on Flow Past a Cylinder at Very High Reynolds Number”, J. Fluid Mech., Vol. 10, pp.345-356, 1961.
[9]Roshko, A., “Perspectives on Bluff Body Aerodynamics”, Journal of Wind Engineering and Industrial Aerodynamics, Vol.49, pp.70-100, 1993.
[10]Humphreys, J. S., “On a Circular Cylinder in a Steady Wind at Transition Reynolds Number”, J. Fluid Mech., Vol.9, pp603-612, 1960.
[11]Tani, I., “Low-Speed Flows Involving Bubble Separation”, Prog. Aeronautical Science, Vol.5, pp.70-90, 1964.
[12]Tani, I., “Boundary-layer transition”, Annual Review of Fluid Mechanics, Vol.1, Issue 1, pp.169-196, 1969.
[13]Achenbach E., “Distribution of Local Pressure and Skin Friction Around a Circular Cylinder in Cross-Flow Up to Re = 5×106 ”, J. Fluid Mech., Vol.34, pp.625-639, 1968.
[14]Bearman, P. W., “On Vortex Shedding from a Circular Cylinder in the Critical Reynolds Number”, J. Fluid Mech., Vol.37, pp.577-585, 1969.
[15]Farell, C. and Blessmann, J., “On Critical Flow around Smooth Circular Cylinders ”, J. Fluid Mech., Vol.136, pp.375-391, 1983.
[16]Higuchi, H., Kim, H. J. and Farell, C., “On Flow Separation and Reattachment around a Circular Cylinder at Critical Reynolds numbers ”, J. Fluid Mech., Vol.200, pp.149-171, 1989.
[17]Schewe, G., “Reynolds Number Effects in Flow around more-or-less Bluff Bodies”, Journal of Wind Engineering and Industrial Aerodynamics, Vol.89, pp.1267-1289, 2001.
[18]Achenbach, E., “Influence of Surface Roughness on the Cross-Flow around a Circular Cylinder ”, J. Fluid Mech., Vol.46, pp.321-335, 1971.
[19]Güven, O., Farell, C. and Patel, V. C., “Influence of Surface Roughness on the Cross-Flow around a Circular Cylinder ”, J. Fluid Mech., Vol.98, pp.673-701, 1980.
[20]Nakamura, Y. and Tomonari, Y., “The Effect of Surface Roughness on the Flow past Circular Cylinders at High Reynolds numbers”, J. Fluid Mech., Vol.123, pp.363-378, 1982.
[21]Schewe, G., “Sensitivity of Transition Phenomena to Small Perturbations in Flow around a Circular Cylinder”, J. Fluid Mech., Vol.172, pp.33-46, 1986.
[22]Leung, Y. C., Wong, C. H. and Ko, N. W. M., “Characteristics of Flows over an Asymmetrically Grooved Circular Cylinder in the Transitional Regimes”, Journal of Wind Engineering and Industrial Aerodynamics, 69-71, pp.169-178, 1997.
[23]Niemann, H. J. and Hölscher, N., “A Review of Recent Experiments on the Flow past Circular Cylinders”, Journal of Wind Engineering and Industrial Aerodynamics, Vol.33, pp.197-209, 1990.
[24]West, G. S. and Aplet, C. J., “Measurements of Fluctuating Pressures and Forces on a Circular Cylinder in the Reynolds Number Range 104 to 2.5×105”, Journal of Fluids and Structures, Vol.7, pp.227-244, 1993.
[25]Uematsu, Y. and Yamada, M., “Effects of Aspect Ratio and Surface Roughness on the Time-Averaged Aerodynamic Forces on Cantilevered Circular Cylinders at High Reynolds Numbers”, Journal of Wind Engineering and Industrial Aerodynamics, 54/55, pp.301-312, 1995.
[26]Perry, A. E., Hot-wire Anemometry, Oxford University Press, 1982.
[27]Jørgensen, F. E., How to Measure Turbulence with Hot-Wire Anemometry-A Practical Guide, Dantec Dynamics, 2002.
[28]Nievergelt, Y., Wavelet Made Easy, Birkhäuser Boston, 2001.
[29]Achenbach, E., “Influence of Surface Roughness on the Cross-Flow around a Circular Cylinder”, J. Fluid Mech., Vol.46, pp.321-335, 1970.
[30]Achenbach, E., “The Effect of Surface Roughness on the Heat Transfer from a Circular Cylinder to the Cross Flow of Air”, Int. J. Heat Mass Transfer, Vol.20, pp.359-369, 1977.
[31]Nishimura, H., Taniike, Y., “Aerodynamic Characteristics of Fluctuating Forces on a Circular Cylinder”, Journal of Wind Engineering and Industrial Aerodynamics, Vol.89, pp.713-723, 2001.
[32]Bertin, J. J. & Smith, M. L., Aerodynamics for Engineers, Third edition, Prentice-Hall International, 1998.
[33]Barlow, J. B., Rae, D. W. Jr., Pope, A., Low speed Wind Tunnel Testing , John Wiley & Sons, New York, 1984.
[34]Schewe, G., “On the Force Fluctuations Acting on a Circular Cylinder in Cross-flow from Subcritical Up to Transcritical Reynolds Numbers”, J. Fluid Mech., Vol.133, pp.265-285, 1983.
[35]胡志忠,非定常流中之瞬時溢放行為,成大航太所博士論文,2000。
[36]Hunt, J. C. R., Abell, C. J., Peterka, J. A. and Woo, H., “Kinematical Studies of the Flows around Free or Surface-Mounted Obstacles; Applying Topology to Flow Visualization”, J. Fluid Mech., Vol.86, part 1, pp.179-200, 1978.
[37]伍湘杰,紊流效應對渦輪機串聯葉片邊界層發展之影響,成大航太所碩士論文,1995。
[38]陳昭銘,表面粗糙物對穿音速邊界層轉換之影響,成大航太所碩士論文,1998。
[39]Norberg, C., “Flow Around a Circular Cylinder: Aspects of Fluctuating Lift”, Journal of Fluids and Structures, Vol.15, pp.459-469, 2001.
[40]Adachi, T., “Effect of Surface Roughness on the Universal Strouhal Number over the Wide Reynolds Number Range”, Journal of Wind Engineering and Industrial Aerodynamics, Vol.69, pp.399-412, 1997.
[41]Tu, J.K, Miau, J.J., Wang, Y.J., Lee, G.B. and Lin, C., “Studying Three-Dimensionality of Vortex Shedding at Reynolds numbers of 104 with MEMS Sensors”, 43rd Aerospace Science Meeting & Exhibit, AIAA paper number 2005-1413, Reno, Nevada, 2006.
[42]Jovic, S., “Recovery of Reattached Turbulent Shear Layer”, Experimental Thermal and Fluid Science, Vol.17, pp.57-62, 1998.
[43]Theofilis, V., Hein, S., Dallmann, U., “On the Origin of Unsteadiness and Three-Dimensionality in a Laminar Separation Bubble”, Phil. Trans. R. Soc. Lond. A, Vol.358, pp.3229-3246, 2000.
[44]Lessmann, R. C. and Hagist, W. M., “Turbulent Separated and Reattached Flow over a Curved Surface,” Journal of Fluids Engineering, Vol.109, pp.403-409, 1987.
[45]Roshko, A., “On the Drag and Shedding Frequency of Two Dimensional Bluff Body”, NACA Tn.3169, 1954.
[46]Roshko, A., “On the Wakes and Drag of Bluff Bodies”, J. Aero. Sci, Vol.22, pp.124-132, 1955.