簡易檢索 / 詳目顯示

研究生: 紀銘祐
Ji, Ming-You
論文名稱: 銅銦二硫薄膜應用於近紅外光檢測器之研究
Study of CuInS2 thin film’s application to near-infrared photodetectors
指導教授: 彭洞清
Perng, Dung-Ching
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2015
畢業學年度: 103
語文別: 英文
論文頁數: 61
中文關鍵詞: 銅銦二硫近紅外光金半金光檢測器
外文關鍵詞: CuInS2, near-infrared, MSM, photodetector
相關次數: 點閱:93下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要探討銅銦二硫作為近紅外光檢測器之吸收層的研究。銅銦二硫薄膜具有很高的光吸收係數及太陽能轉換效率,其能隙落於近紅外光譜,因此可以當近紅外光檢測器之吸收層。此研究吸收層之形成是先濺鍍銅銦先驅物於鍍好鉬薄膜之基板,然後使用適當的硫化製程,製備出銅銦二硫薄膜,上面再鍍鋁薄膜並用微影製程定義鋁電極,形成金屬–半導體–金屬(金半金)之近紅外光檢測器。
    本論文研究不同先驅物的比例對元件特性的影響,並透過XRD、SEM、EDS、拉曼光譜儀、I-V測量及螢光光譜儀,對薄膜進行晶體結構、表面型態、成分比例進行分析及近紅外光響應之檢測。
    在研究中,我共濺鍍Cu/In靶材,利用控制各靶材之濺鍍功率(瓦數)去形成不同比例的銅和銦先驅物,當先驅物銅/銦比增加,經硫化製程後CuInS2 (CIS)薄膜結晶性逐漸改善(形成緻密之晶粒)。在使用適當的先驅物比例及硫化後,得到的近紅外光檢測器在電極間距2µm下,呈現出10倍的光電流放大效果,如果用分子束磊晶方式形成CIS材料,我們應該可以得到靈敏度更高之近紅外光光電流放大效果。

    In this dissertation, CuInS2 (CIS) thin films as the absorption layer of a near infrared photodetector (PD) is studied. CIS thin film has high optical absorption coefficient and high solar energy conversion efficiency, and its bandgap is within the NIR spectrum. Therefore, it is a good NIR PD candidate as the absorber layer. In this study, formation of CIS film was prepared by co-sputtering Cu/In thin films on a Mo coated substrate followed by appropriate sulfurization. Deposition of Al film and photolithography processes were used to pattern the electrodes of the metal-semiconductor-metal (MSM) PDs.
    In this study, the influence of precursor Cu/In ratio on CIS thin film as well as was on device performance is investigated. Scanning electron microscope was used to observe the film’s morphology, crystalline phase and orientation were determined by X-ray diffraction patterns and Raman analysis, and an energy-dispersive X-ray spectroscopy was used to analyze the compositions of the films. Photoluminescence measurements were to used for investigating CIS film’s quality and its possible bandgap, Current-voltage characteristics under or without NIR illumination was to characterize the PDs that fabricated.
    Precursors of different Cu/In ratios, controlled by adjusting co-sputtering powers, were sulfurized, as the atomic ratio of Cu/In increases (0.78-1.22 range), its crystallinity of the CIS film improves. The best PD sample that fabricated exhibits a one-order of magnitude in photocurrent amplification with 2-µm electrode spacing. More sensitive amplification can be expected by using other CIS forming methods, such as molecular beam epitaxy.

    Abstract (in Chinese) I Abstract (in English) III Acknowledgements V Contents VII Table captions X Figure captions XI Chapter 1 Introduction 1 § 1.1 Background 1 § 1.2 Motivation 1 Chapter 2 Theory 3 § 2.1 Metal-semiconductor contact 3 2.1.1 Interface theory 3 2.1.2 Current transport mechanism 4 § 2.2 Semiconductor photodetector 5 2.2.1 Principle of operation 5 2.2.2 Metal-semiconductor-metal (MSM) photodetector5 5 2.2.3 Schottky barrier height 7 Chapter 3 Characteristics of CuInS21 thin film 17 § 3.1 Material properties of CuInS2 thin film 17 Chapter 4 Experimental Scheme 20 § 4.1 Experimental materials 20 § 4.2 Process equipments 20 4.2.1 Sputter system 20 4.2.2 Sulfurization system 21 4.2.3 Single-side mask aligner 22 4.2.4 Thermal Evaporation System 22 § 4.3 Experiment procedure 23 4.3.1 Substrate 24 4.3.2 Chromium (Cr) layer 25 4.3.3 Molybdenum (Mo) layer 25 4.3.4 Potassium cyanide (KCN) etch 26 4.3.5 Fabrication of metal-semiconductor-metal (MSM) pattern 26 § 4.4 Analysis equipments 27 4.4.1 Scanning Electron Microscope (SEM) and Energy Dispersive X-ray spectroscopy (EDXS)4,5 27 4.4.2 X-ray Diffraction (XRD)7 30 4.4.3 Photoluminescence (PL)8 32 4.4.4 Microscopes Raman Spectrometer 32 4.4.5 Electrical measurement system 33 Chapter 5 Results and Discussion 42 § 5.1 Challenges of forming CuInS2 films 42 § 5.2 Characterization of films 42 § 5.3 SEM observations of CuInS2 thin film morphology 43 § 5.4 X-ray diffraction patterns of stacked films 43 § 5.5 Photoluminescence analysis of CuInS2 thin film 44 § 5.6 Raman analysis of CuInS2 thin film 44 § 5.7 Electrical measurements 44 Chapter 6 Summary and prospect 55 § 6.1 Summary 55 § 6.2 prospect 55 References 56 § References in chapter 1 56 § References in chapter 2 58 § References in chapter 3 60 § References in chapter 4 60 § References in chapter 5 61

    References in chapter 1
    [1] Bünzli, Jean-Claude G., and Svetlana V. Eliseeva. "Lanthanide NIR luminescence for telecommunications, bioanalyses and solar energy conversion." Journal of Rare Earths, 28 (6) (2010), pp.824-842.
    [2] Cutini, Simone, Sara Basso Moroa, and Silvia Biscontib. "Functional near infrared optical imaging in cognitive neuroscience: an introductory.", 2012.
    [3] Bwambok, David K., et al. "Near-infrared fluorescent nanoGUMBOS for biomedical imaging." Acs Nano, 3 (12) (2009), pp.3854-3860.
    [4] Pillai, Rajeev, et al. "InGaN/silicon heterojunction based narrow band near-infrared detector." Journal of Vacuum Science & Technology, 33 (1) (2015), pp.011205.
    [5] Roy, S., et al. "Nano-scale NiSi and n-type silicon based Schottky barrier diode as a near infra-red detector for room temperature operation." Journal of Applied Physics, 116 (12) (2014), pp.124507.
    [6] Izumi, Shota, et al. "Near-infrared photodetection of β-FeSi2/Si heterojunction photodiodes at low temperatures." Applied Physics Letters, 102 (3) (2013), pp.032107.
    [7] Lv, Peng, et al. "High-Sensitivity and Fast-Response Graphene/Crystalline Silicon Schottky Junction-Based Near-IR Photodetectors." Electron Device Letters, IEEE, 34 (10) (2013), pp.1337-1339.
    [8] Colace, L., et al. "Metal–semiconductor–metal near-infrared light detector based on epitaxial Ge/Si."Applied physics letters, 72 (24) (1998), pp.3175-3177.
    [9] Im, Sang Hyuk, Hi-jung Kim, and Sang Il Seok. "Near-infrared responsive PbS-sensitized photovoltaic photodetectors fabricated by the spin-assisted successive ionic layer adsorption and reaction method." Nanotechnology, 22 (39) (2011), pp.395502.
    [10] Nomura, Ryoki, Yasuharu Sekl, and Haruo Matsuda. "Preparation of CuInS2 thin films by single-source MOCVD process using Bu2In (SPr) Cu (S2CNPri2)."J. Mater. Chem., 2 (7) (1992), pp.765-766.
    [11] Pouzet JC, Bernede, Kelil A., Essaidis H., Benhida, Thin Solid Films, 15 (1994), pp.252.
    [12] Gossla, M., et al. "Thin CuInS2 films by three-source molecular beam deposition." Thin Solid Films, 268 (1) (1995), pp.39-44.
    [13] Gossla, M., H. Metzner, and H-E. Mahnke. "CuInS2 thin-films from co-evaporated precursors." Thin Solid Films, 387 (1) (2001), pp.77-79.
    [14] Nanu, Marian, et al. "CuInS2 thin films deposited by ALD." Chemical Vapor Deposition, 10 (1) (2004), pp.45-49.
    [15] Siemer, Kai, et al. "Efficient CuInS2 solar cells from a rapid thermal process (RTP)." Solar energy materials and solar cells, 67 (1) (2001), pp.159-166.
    [16] Kruszynska, Marta, et al. "Synthesis and shape control of CuInS2 nanoparticles." Journal of the American Chemical Society, 132 (45) (2010), pp.15976-15986.
    [17] Hosseinpour-Mashkani, S. Mostafa, et al. "CuInS2 nanoparticles: Microwave-assisted synthesis, characterization, and photovoltaic measurements." Materials Science in Semiconductor Processing, 16 (2) (2013), pp.390-402.
    [18] Connor, Stephen T., et al. "Phase transformation of biphasic Cu2S− CuInS2 to monophasic CuInS2 nanorods." Journal of the American Chemical Society, 131 (13) (2009), pp.4962-4966.
    [19] Li, Jie, et al. "Role of Copper Sulfide Seeds in the Growth Process of CuInS2 Nanorods and Networks." ACS applied materials & interfaces, 6 (22) (2014), pp.20535-20543.
    [20] Wu, Jih-Jen, Wan-Ting Jiang, and Wen-Pin Liao. "CuInS2 nanotube array on indium tin oxide: synthesis and photoelectrochemical properties." Chemical Communications, 46 (32) (2010), pp.5885-5887.
    [21] Yu, Chao, et al. "Synthesis and formation mechanism of CuInS2 nanocrystals with a tunable phase." Cryst Eng Comm., 16 (41) (2014), pp.9596-9602.
    [22] Sze, S. M., D. J. Coleman, and A. Loya. "Current transport in metal-semiconductor-metal (MSM) structures." Solid-State Electronics, 14 (12) (1971), pp.1209-1218.
    [23] Chiou, Yu-Zung, et al. "The characteristics of different transparent electrodes on GaN photodetectors." Materials chemistry and physics, 80 (1) (2003), pp.201-204.

    § References in chapter 2
    [1] Rhoderick, Emlyn Huw, and R. H. Williams. "Metal-semiconductor contacts.", Oxford: Clarendon Press, 1988.
    [2] Simon M. Sze. "Semiconductor Device Physics and Technology.", (1985), pp.160.
    [3] Simon M. Sze. "Semiconductor Device Physics and Technology.", (1985), pp.278.
    [4] Sze, S. M., D. J. Coleman, and A. Loya. "Current transport in metal-semiconductor-metal (MSM) structures." Solid-State Electronics, 14 (12) (1971), pp.1209-1218.
    [5] Budianu, E., et al. "Silicon metal-semiconductor–metal photodetector with zinc oxide transparent conducting electrodes." Thin Solid Films, 516 (7) (2008), pp.1629-1633.
    [6] Monroy, E., et al. "High-performance GaN pn junction photodetectors for solar ultraviolet applications." Semiconductor science and technology, 13 (9) (1998), pp.1042.
    [7] Xu, G. Y., et al. "High speed, low noise ultraviolet photodetectors based on GaN pin and AlGaN (p)-GaN (i)-GaN (n) structures." Applied physics letters, 71 (15) (1997), pp.2154-2156.
    [8] Osinsky, A., et al. "Low noise p-π-n GaN ultraviolet photodetectors." Applied physics letters, 71 (16) (1997), pp.2334-2336.
    [9] Horng, J. J., et al. "Nitride-based Schottky barrier sensor module with high electrostatic discharge reliability." Photonics Technology Letters, IEEE, 19 (10) (2007), pp.717-719.
    [10] Chen, C. H., et al. "GaN metal-semiconductor-metal ultraviolet photodetectors with transparent indium-tin-oxide Schottky contacts." Photonics Technology Letters, IEEE, 13 (8) (2001), pp.848-850.
    [11] Cheung, S. K., and N. W. Cheung. "Extraction of Schottky diode parameters from forward current‐voltage characteristics." Applied Physics Letters, 49 (2) (1986), pp.85-87.
    [12] Norde, H. "A modified forward I‐V plot for Schottky diodes with high series resistance." Journal of Applied Physics, 50 (7) (1979), pp.5052-5053.

    § References in chapter 3
    [1] Neelkanth G. Dhere,"solar device photoelectrochemical water splitting for hydrogen generation using multiple bandgap tandem of CIGS2 PV cells and thin film photocatalyst", M.S. Thesis. University of Central Florida, (2002), pp.17-19.

    § References in chapter 4
    [1] Wetzig, Klaus. Metal based thin films for electronics. Weinheim: Wiley-VCH, 2003.
    [2] Campbell, Stephen A. The science and engineering of microelectronic fabrication. Oxford University Press, USA, 1996.
    [3] Rao, V. V., T. B. Gosh, and K. L. Chopra. Vacuum Science and Technology. Sunil Sachdev, 2008.
    [4] Friedbacher, Gernot, and Henning Bubert, eds.Surface and Thin Film Analysis: A Compendium of Principles, Instrumentation, and Applications. John Wiley & Sons, 2011.
    [5] Hayat, M. Arif. Principles and techniques of scanning electron microscopy. Biological applications. Volume 1. Van Nostrand Reinhold Company., 1974.
    [6] Schwartz, Geraldine C., and Kris V. Srikrishnan, eds. Handbook of semiconductor interconnection technology. CRC Press, 2006.
    [7] Birkholz, Mario. Thin film analysis by X-ray scattering. John Wiley & Sons, 2006.
    [8] Gfroerer, Timothy H. "Photoluminescence in analysis of surfaces and interfaces." Encyclopedia of Analytical Chemistry, 2000.

    § References in chapter 5
    [1] Rudigier, Eveline, et al. "Quasi real-time Raman studies on the growth of Cu-In-S thin films." Journal of Applied Physics, 95 (2004), pp.5153-5158.
    [2] Tsai, Chia-Hung, Jyh-Ming Ting, and Wen-Hsien Ho. "Microstructural analysis and phase transformation of CuInS2 thin films during sulfurization." Cryst Eng Comm, 13 (17) (2011), pp.5447-5454.

    無法下載圖示 校內:2020-07-20公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE