簡易檢索 / 詳目顯示

研究生: 唐振勛
Tang, Chen-Hsun
論文名稱: 以尤拉-拉格朗日耦合分析進行同震山崩之數值模擬:以熊本阿蘇大橋為例
Modelling the coseismic landslide using coupled Eulerian-Lagrangian approach: a case study of the 2016 Aso-Bridge landslide, Japan
指導教授: 林冠瑋
Lin, Guan-Wei
學位類別: 碩士
Master
系所名稱: 理學院 - 地球科學系
Department of Earth Sciences
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 81
中文關鍵詞: 同震崩塌有限元素分析尤拉-拉格朗日耦合分析阿蘇大橋崩塌
外文關鍵詞: coseismic landslide, finite element analysis, Coupled Eulerian-Lagrangian analysis, Aso-bridge landslide
相關次數: 點閱:132下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 坡地塊體崩塌為常見的地質災害之一,而引發崩塌的因素眾多,如降雨事件、地震事件,以及人為開發等。其中,當規模較大的地震發生時常會誘發邊坡的崩塌,並且常因不了解同震崩塌的動力過程以及運移狀況,在崩塌發生時往往會造成嚴重的災害。近年來透過數值方法對崩塌進行模擬逐漸成為有力的研究工具,而有限元素分析(Finite element analysis, FEA)則是常用的數值模擬方法之一,本研究將以有限元素法之模擬軟體Abaqus進行三維的坡地塊體崩塌之模擬。由於崩塌作用屬於坡地塊體劇烈變位的現象,而傳統拉格朗日分析法在元素大量變形時,網格會過於扭曲使得模擬無法正常計算。因此本研究採用尤拉-拉格朗日耦合分析(The Coupled Eulerian-Lagrangian analysis, CEL),克服在拉格朗日分析中無法處理元素過度扭曲的問題,以模擬崩塌時塊體劇烈變形及位移的現象。
    本研究以2016年日本熊本地震(MW7.0)誘發的阿蘇大橋崩塌為例,成功利用尤拉-拉格朗日耦合分析模擬崩塌塊體的滑移過程以及塊體的堆積分布。模擬結果顯示當熊本地震開始後約5 s至7 s時,位於邊坡源頭區的塊體從變形現象轉變為快速滑移行為,且滑移的速度最快可達到30 m/s。當塊體在邊坡上快速向下滑移時,將會侵蝕路徑上的表層材料,並將其鏟刮至下方邊坡以及河道處堆積。藉由計算出崩塌塊體作用於邊坡上的力與時間序列,可進一步瞭解塊體在滑移過程中加速或減速的現象。於本研究的結果中可以觀察到塊體在滑移過程中有3次減速的階段,並對應到地形的變化,可以了解地形的變化影響了塊體的運動速度。根據Newmark塊體滑動理論,配合模擬結果顯示當地表加速度超過0.15 g時,將會使邊坡上不穩定的塊體產生永久性位移,當累積永久位移量達5 cm至10 cm時,塊體將會從變形現象轉變為快速位移的行為。本研究結果顯示,利用尤拉-拉格朗日耦合分析對於崩塌作用進行模擬,可以有效地了解崩塌的發生條件以及運動狀態,將有利於未來對於坡地災害的研究與防災準備。

    The landslide is one of the frequent geohazards, and many factors can cause it, such as massive rainfall events, earthquakes, and human activities. When large earthquakes occur, the coseismic landslides often appear around the mountain areas. Because of the lack of understanding of the dynamic processes of coseismic landslides, the landslides may cause catastrophic disasters. In recent years, numerical simulation of landslides has become a powerful tool, and the finite element analysis (FEA) is also one of the commonly used numerical methods. Since the landslide process involves large deformation , the traditional Lagrangian analysis will be limited by the extreme mesh distortion. For this reason, the study adepts the Coupled Eulerian-Lagrangian analysis (CEL) to simulate the sliding process of blocks.

    This study successfully simulates the sliding process of the block and deposit area of the Aso-Bridge landslide induced by the 2016 Kumamoto earthquake. According to the simulation results, when the ground acceleration exceeds 0.15 g, the block in the source area of the slope transfers from deformation to rapid slip behavior, and the maximum sliding velocity can reach 30 m/s. By calculating the force and time series during the movement of the collapsing block, the acceleration or deceleration during the sliding process can be exhibited. It can be observed that the block decelerates three times during the sliding process, which corresponds to the change in terrain. Using the CEL method to simulate the landslide can effectively comprehend the dynamic sliding process, which be beneficial to future research of slope disasters.

    第一章 緒論 1 1.1 研究動機 1 1.2 研究目的 2 1.3 論文架構 2 第二章 文獻回顧 4 2.1 地震誘發崩塌事件回顧與比較 4 2.1.1 1999年集集地震誘發草嶺崩塌 4 2.1.2 2008年汶川地震誘發東河口崩塌 5 2.1.3 地震誘發崩塌與降雨誘發崩塌之特徵比較 5 2.2 地震誘發崩塌的分析方法 6 2.2.1 偽靜態分析(Pseudo-static analysis) 7 2.2.2 應力變形分析(Stress-deformation analysis) 7 2.2.3 永久位移量分析(Permanent-displacement analysis) 7 2.3 數值模擬分析 8 2.3.1 有限元素法 8 2.3.2 離散元素法 8 2.3.3 尤拉-拉格朗日耦合分析法 9 2.4 案例分析 10 2.4.1 利用有限元素法結合離散元素法模擬2016年熊本阿蘇大橋崩塌 10 2.4.2 利用尤拉-拉格朗日分析模擬2008年四川大光包崩塌 12 2.4.3 利用尤拉-拉格朗日分析模擬2011年首爾牛眠山土石流 14 第三章 研究方法與案例 18 3.1 有限元素法 18 3.1.1 有限元軟體Abaqus基本介紹 18 3.1.2有限元分析計算原理 19 3.1.3 尤拉-拉格朗日分析 21 3.2 研究案例 26 3.2.1 2016年熊本地震 26 3.2.2 熊本阿蘇大橋崩塌介紹 28 3.2.3 地質材料模型 33 3.2.4 模型設計概念 34 3.2.5 阿蘇大橋於尤拉-拉格朗日耦合分析之三維模型 35 第四章 研究成果 39 4.1 阿蘇大橋崩塌滑移的模擬結果 39 4.2 崩塌塊體的動力過程 43 第五章 模擬結果討論 48 5.1參數對模擬結果之影響 48 5.1.1摩擦係數對模擬結果之影響 48 5.1.2材料凝聚力對模擬結果之影響 49 5.1.3楊氏模數對模擬結果之影響 51 5.2分析力-時序列與崩塌塊體滑動質量之關係 56 5.3紐馬克塊體滑動分析(Newmark’s sliding block analysis) 59 第六章 結論 63 參考文獻 65 附錄 76

    成思源(2001)。有限元法的方法論。重慶大學學報,第7卷第4期,61-63
    許強、李為樂(2010)。汶川地震誘發大型滑坡分佈規律研究。工程地質學報,第18卷第6期,818-826
    何岱杰、張維恕、林慶偉、劉守恆(2014)。應用數值地形及光學影像於潛在大規模崩塌地形特徵判釋。航測及遙測學刊。第18卷第2期,109-127
    何春蓀(1986)。台灣地質概論-台灣地質圖說明書。台灣:經濟部中央地質調查所
    李寧、許建聰(2012)。基於場變量的邊坡穩定分析有限元強度折減法。岩土力學,第33卷第1期,314-318
    李秀珍、孔紀名、鄧紅艷、崔雲、田述軍、阿發友(2009)。”5·12”汶川地震滑坡特徵及失穩破壞模式分析。四川大學學報:工程科學版,第三期,72-77
    周本剛、張裕明(2017)。中國西南地區地震滑坡的基本特徵。地震工程學報,第16卷第1期,95-103
    洪如江、林美聆、陳天健、王國隆(2000)。921 集集大地震相關的坡地災害,坡地破壞特性,與案例分析。地工技術,第81期, 17-32
    胡卸文、呂小平、黃潤秋、施裕兵、劉娟、李仰波(2009)。唐家山堰塞湖大水溝泥石流發育特徵及堵江危害性評價。岩石力學與工程學報,第28卷第4期,850-850
    韋廷樺(2016)。大規模崩塌地形衍育概念模型-鹿場案例。交通大學土木工程學系所學位論文:1-130
    孫萍、張永雙、殷躍平、汪發武、吳樹仁、石菊松(2009)。東河口滑坡-碎屑流高速遠程運移機制探討。工程地質學報,17(6),737-744
    國家災害防救科技中心。全球災害事件簿-2016年熊本地震。取自https://den.ncdr.nat.gov.tw/1132/1188/1205/20357/22119/
    陳水龍、林群富(2006)。利用有限元素法與極限平衡法進行九份國小邊坡穩定分析。技術學刊,21(4),383-392
    陳毅青(2012)。降雨誘發崩塌侵蝕之規模頻率及其控制因子。國立臺灣大學土木工程學系博士論文:1-158
    陳樹群、吳俊鋐、王雁平(2010)。地震或降雨誘發崩塌之崩塌特性探討。中華水土保持學報,第41卷第2期,147-158
    黃淳銘(2019)。結合地質模型進行三維離散元之崩塌運移數值模擬-以太麻里溪、四川新磨村、檨仔寮為例。國立成功大學地球科學系碩士論文:1-93
    黃潤秋(2009)。汶川8.0級地震觸發崩滑災害機制及其地質力學模式。岩石力學與工程學報,第28卷第6期,1239-1249
    喻波、黃政宇(2008)。基於ANSYS的ABAQUS強度折減邊坡穩定性分析,公路工程,第33卷第2期,47-53
    廖軒吾(2000)。集集地震誘發之山崩。國立中央大學地球物理研究所碩士論文:1-90
    賴志強(2008)。台灣地區降雨及地震誘發崩塌之特性研究。成功大學水利及海洋工程學系學位論文:1-137
    謝嘉聲、蕭達鴻、唐昭榮、胡植慶(2015)。利用顆粒體離散元素法模擬莫拉克颱風所引致之新開崩塌。中華水土保持學報,第46卷第1期,29-37
    Adachi, T., & Oka, F. (1995). An elasto‐plastic constitutive model for soft rock with strain softening. International Journal for Numerical and Analytical Methods in Geomechanics, 19(4), 233-247.
    Armanini, A., Fraccarollo, L., & Larcher, M. (2008). Liquid–granular channel flow dynamics. Powder Technology, 182(2), 218-227.
    Benson, D. J. (1992). Computational methods in Lagrangian and Eulerian hydrocodes. Computer Methods in Applied Mechanics and Engineering, 235-394.
    Benson, D. J., & Okazawa, S. (2004). Contact in a multi-material Eulerian finite element formulation. Computer Methods in Applied Mechanics and Engineering, 193(39-41), 4277-4298. doi:10.1016/j.cma.2003.12.061
    Bhattacharya, S., Hyodo, M., Nikitas, G., Ismael, B., Suzuki, H., Lombardi, D., . . . Goda, K. (2018). Geotechnical and infrastructural damage due to the 2016 Kumamoto earthquake sequence. Soil Dynamics and Earthquake Engineering, 104, 390-394. doi:10.1016/j.soildyn.2017.11.009
    Brodsky, E. E., Gordeev, E., & Kanamori, H. (2003). Landslide basal friction as measured by seismic waves. Geophysical Research Letters, 30(24).
    Chang, K.-T., Chiang, S.-H., & Hsu, M.-L. (2007). Modeling typhoon- and earthquake-induced landslides in a mountainous watershed using logistic regression. Geomorphology, 89(3-4), 335-347. doi:10.1016/j.geomorph.2006.12.011
    Chao, W. A., Zhao, L., Chen, S. C., Wu, Y. M., Chen, C. H., & Huang, H. H. (2016). Seismology-based early identification of dam-formation landquake events. Scientific reports, 6, 19259.
    Chen, H., & Lee, C. (2000). Numerical simulation of debris flows. Canadian Geotechnical Journal, 37(1), 146-160.
    Chen, T. C., Lin, M. L., & Wang, K. L. (2014). Landslide seismic signal recognition and mobility for an earthquake-induced rockslide in Tsaoling, Taiwan. Engineering Geology, 171, 31-44.
    Chen, X. Y., & Zhang, L. L. (2018). Slope Stability Analysis Based on the Coupled Eulerian-Lagrangian Method. In Proceedings of GeoShanghai 2018 International Conference: Geoenvironment and Geohazard (pp. 152-159).
    Chen, Y., Zhao, W., Han, J., & Jia, P. (2019). A CEL study of bearing capacity and failure mechanism of strip footing resting on c-φ soils. Computers and Geotechnics, 111, 126-136. doi:10.1016/j.compgeo.2019.03.015
    Chigira, M., Tsou, C.-Y., Matsushi, Y., Hiraishi, N., & Matsuzawa, M. (2013). Topographic precursors and geological structures of deep-seated catastrophic landslides caused by Typhoon Talas. Geomorphology, 201, 479-493.
    Clough, R. W. (1960). The finite element method in plane stress analysis. Paper presented at the Proceedings of 2nd ASCE Conference on Electronic Computation, Pittsburgh Pa., Sept. 8 and 9, 1960.
    Clough, R. W., & Chopra, A. K. (1966). Earthquake stress analysis in earth dams. Journal of the Engineering Mechanics Division, 92(2), 197-212.
    Crosta, G., Chen, H., & Frattini, P. (2006). Forecasting hazard scenarios and implications for the evaluation of countermeasure efficiency for large debris avalanches. Engineering Geology, 83(1-3), 236-253.
    Cundall, P. A., & Strack, O. D. (1979). A discrete numerical model for granular assemblies. geotechnique, 29(1), 47-65.
    Dai, F., Lee, C., & Wang, S. (2003). Characterization of rainfall-induced landslides. International Journal of Remote Sensing, 24(23), 4817-4834.
    Dai, Z., Huang, Y., Cheng, H., & Xu, Q. (2016). SPH model for fluid–structure interaction and its application to debris flow impact estimation. Landslides, 14(3), 917-928. doi:10.1007/s10346-016-0777-4
    Dai, Z., Wang, F., Huang, Y., Song, K., & Iio, A. (2016). SPH-based numerical modeling for the post-failure behavior of the landslides triggered by the 2016 Kumamoto earthquake. Geoenvironmental Disasters, 3(1). doi:10.1186/s40677-016-0058-5
    Dang, K., Sassa, K., Fukuoka, H., Sakai, N., Sato, Y., Takara, K., . . . Ha, N. D. (2016). Mechanism of two rapid and long-runout landslides in the 16 April 2016 Kumamoto earthquake using a ring-shear apparatus and computer simulation (LS-RAPID). Landslides, 13(6), 1525-1534. doi:10.1007/s10346-016-0748-9
    Dassault Systèmes. (2016). Abaqus 2016 Documentation. Retrieved from http://130.149.89.49:2080/v2016/index.html
    Dunlop, P., & Duncan, J. M. (1970). Development of failure around excavated slopes. Journal of Soil Mechanics & Foundations Div.
    Ekström, G., & Stark, C. P. (2013). Simple scaling of catastrophic landslide dynamics. Science, 339(6126), 1416-1419.
    Haddad, B., Pastor, M., Palacios, D., & Munoz-Salinas, E. (2010). A SPH depth integrated model for Popocatépetl 2001 lahar (Mexico): Sensitivity analysis and runout simulation. Engineering Geology, 114(3-4), 312-329.
    Hibert, C., Stark, C., & Ekström, G. (2015). Dynamics of the Oso-Steelhead landslide from broadband seismic analysis. Natural Hazards & Earth System Sciences Discussions, 3(6).
    Huang, R., Li, & WL. (2009). Analysis of the geo-hazards triggered by the 12 May 2008 Wenchuan Earthquake, China. Bulletin of Engineering Geology and the Environment, 68(3), 363-371.
    Huang, Y., Zhang, W., Xu, Q., Xie, P., & Hao, L. (2011). Run-out analysis of flow-like landslides triggered by the Ms 8.0 2008 Wenchuan earthquake using smoothed particle hydrodynamics. Landslides, 9(2), 275-283. doi:10.1007/s10346-011-0285-5
    Hung, C., Lin, G.-W., Syu, H.-S., Chen, C.-W., & Yen, H.-Y. (2017). Analysis of the Aso-Bridge landslide during the 2016 Kumamoto earthquakes in Japan. Bulletin of Engineering Geology and the Environment, 77(4), 1439-1449. doi:10.1007/s10064-017-1103-7
    Hung, C., Liu, C.-H., Lin, G.-W., & Leshchinsky, B. (2018). The Aso-Bridge coseismic landslide: a numerical investigation of failure and runout behavior using finite and discrete element methods. Bulletin of Engineering Geology and the Environment, 78(4), 2459-2472. doi:10.1007/s10064-018-1309-3
    Hung, J.-J. (2000). Chi-Chi earthquake induced landslides in Taiwan. Earthquake Engineering and Engineering Seismology, 2(2), 25-33.
    Hunger, O., & Morgenstern, N. (1984). Experiments on the flow behaviour of granular materials at high velocity in an open channel. geotechnique, 34(3), 405-413.
    Hungr, O. (1995). A model for the runout analysis of rapid flow slides, debris flows, and avalanches. Canadian Geotechnical Journal, 32(4), 610-623.
    Islam, N., Hawlader, B., Wang, C., & Soga, K. (2019). Large-deformation finite-element modelling of earthquake-induced landslides considering strain-softening behaviour of sensitive clay. Canadian Geotechnical Journal, 56(7), 1003-1018.
    Jeong, S., & Lee, K. (2019). Analysis of the impact force of debris flows on a check dam by using a coupled Eulerian-Lagrangian (CEL) method. Computers and Geotechnics, 116. doi:10.1016/j.compgeo.2019.103214
    Jeong, S. W., Locat, J., Leroueil, S., & Malet, J.-P. (2010). Rheological properties of fine-grained sediment: the roles of texture and mineralogy. Canadian Geotechnical Journal, 47(10), 1085-1100.
    Jibson, R. W. (1993). Predicting earthquake-induced landslide displacements using Newmark's sliding block analysis. Transportation research record, 1411, 9-17.
    Jibson, R. W. (2007). Regression models for estimating coseismic landslide displacement. Engineering Geology, 91(2-4), 209-218.
    Jibson, R. W., Clague, J. J., & Stead, D. (2012). Models of the triggering of landslides during earthquakes. In Landslides (pp. 196-206).
    Jibson, R. W., & Keefer, D. K. (1993). Analysis of the seismic origin of landslides: Examples from the New Madrid seismic zone. Geological Society of America Bulletin, 105(4), 521-536.
    Keefer, D. K. (1984). Landslides caused by earthquakes. Geological Society of America Bulletin, 95(4), 406-421.
    Khosravi, M., & Khabbazian, M. (2012). Presentation of critical failure surface of slopes based on the finite element technique. In GeoCongress 2012: State of the Art and Practice in Geotechnical Engineering (pp. 536-545).
    Kramer, S. L. (1996). Geotechnical earthquake engineering. Pearson Education India.
    Kuo, C., Tai, Y.-C., Chen, C., Chang, K., Siau, A., Dong, J., . . . Lee, C. (2011). The landslide stage of the Hsiaolin catastrophe: simulation and validation. Journal of Geophysical Research: Earth Surface, 116(F4).
    Kuo, Y.-S., Tsai, Y.-J., Chen, Y.-S., Shieh, C.-L., Miyamoto, K., & Itoh, T. (2013). Movement of deep-seated rainfall-induced landslide at Hsiaolin Village during Typhoon Morakot. Landslides, 10(2), 191-202.
    Lade, P. V., & Duncan, J. M. (1975). Elastoplastic stress-strain theory for cohesionless soil. Journal of Geotechnical and Geoenvironmental Engineering, 101(ASCE# 11670 Proceeding).
    Lee, K., & Jeong, S. (2018). Large deformation FE analysis of a debris flow with entrainment of the soil layer. Computers and Geotechnics, 96, 258-268. doi:10.1016/j.compgeo.2017.11.008
    Lee, K., Kim, Y., Ko, J., & Jeong, S. (2019). A study on the debris flow-induced impact force on check dam with- and without-entrainment. Computers and Geotechnics, 113. doi:10.1016/j.compgeo.2019.103104
    Leshchinsky, B., Vahedifard, F., Koo, H.-B., & Kim, S.-H. (2015). Yumokjeong Landslide: an investigation of progressive failure of a hillslope using the finite element method. Landslides, 12(5), 997-1005. doi:10.1007/s10346-015-0610-5
    Li, A.-J., Lyamin, A., & Merifield, R. (2009). Seismic rock slope stability charts based on limit analysis methods. Computers and Geotechnics, 36(1-2), 135-148.
    Lin, C., Kumagai, H., Ando, M., & Shin, T. (2010). Detection of landslides and submarine slumps using broadband seismic networks. Geophysical Research Letters, 37(22).
    Lin, C.-H., Hung, C., & Hsu, T.-Y. (2020). Investigations of granular material behaviors using coupled Eulerian-Lagrangian technique: From granular collapse to fluid-structure interaction. Computers and Geotechnics, 121. doi:10.1016/j.compgeo.2020.103485
    Lin, C.-H., & Lin, M.-L. (2015). Evolution of the large landslide induced by Typhoon Morakot: A case study in the Butangbunasi River, southern Taiwan using the discrete element method. Engineering Geology, 197, 172-187. doi:10.1016/j.enggeo.2015.08.022
    Liu, H. D., Li, D. D., & Wang, Z. F. (2018). Dynamic process of the Wenjiagou rock landslide in Sichuan Province, China. Arabian Journal of Geosciences, 11(10). doi:10.1007/s12517-018-3564-9
    Lo, C.-M., Feng, Z.-Y., & Chang, K.-T. (2018). Landslide hazard zoning based on numerical simulation and hazard assessment. Geomatics, Natural Hazards and Risk, 9(1), 368-388. doi:10.1080/19475705.2018.1445662
    Lo, C.-M., Lin, M.-L., Tang, C.-L., & Hu, J.-C. (2011). A kinematic model of the Hsiaolin landslide calibrated to the morphology of the landslide deposit. Engineering Geology, 123(1-2), 22-39. doi:10.1016/j.enggeo.2011.07.002
    Locat, J. (1997). Normalized rheological behaviour of fine muds and their flow properties in a pseudoplastic regime. Paper presented at the Debris-flow hazards mitigation: mechanics, prediction, and assessment.
    Lu, C.-Y., Tang, C.-L., Chan, Y.-C., Hu, J.-C., & Chi, C.-C. (2014). Forecasting landslide hazard by the 3D discrete element method: A case study of the unstable slope in the Lushan hot spring district, central Taiwan. Engineering Geology, 183, 14-30. doi:10.1016/j.enggeo.2014.09.007
    Mangeney, A., Roche, O., Hungr, O., Mangold, N., Faccanoni, G., & Lucas, A. (2010). Erosion and mobility in granular collapse over sloping beds. Journal of Geophysical Research: Earth Surface, 115(F3).
    McCoy, S., Kean, J. W., Coe, J. A., Tucker, G., Staley, D. M., & Wasklewicz, T. (2012). Sediment entrainment by debris flows: In situ measurements from the headwaters of a steep catchment. Journal of Geophysical Research: Earth Surface, 117(F3).
    Mohammadi, S., & Taiebat, H. A. (2013). A large deformation analysis for the assessment of failure induced deformations of slopes in strain softening materials. Computers and Geotechnics, 49, 279-288. doi:10.1016/j.compgeo.2012.08.006
    National Research Institute for Earth Science and Disaster Resilience. Strong-motion Seismograph Networks. Retrieved from https://www.kyoshin.bosai.go.jp/
    Newmark, N. M. (1965). Effects of earthquakes on dams and embankments. geotechnique, 15(2), 139-160.
    Noh, W. F. (1963). CEL: A time-dependent, two-space-dimensional, coupled Eulerian-Lagrange code (No. UCRL-7463). Lawrence Radiation Lab., Univ. of California, Livermore.
    Ono, K., & Watanabe, K. (1985). Geological map of Aso Volcano 1: 50,000. Geological Map of Volcanoes 4. Geol. Surv. Jpn. Paper presented at the Japanese with English abstract.
    Pastor, M., Stickle, M. M., Dutto, P., Mira, P., Merodo, J. F., Blanc, T., . . . Benítez, A. (2015). A viscoplastic approach to the behaviour of fluidized geomaterials with application to fast landslides. Continuum Mechanics and Thermodynamics, 27(1-2), 21-47.
    Phillips, C. J., & Davies, T. R. (1991). Determining rheological parameters of debris flow material. Geomorphology, 4(2), 101-110.
    Potts, D., Dounias, G., & Vaughan, P. (2009). Finite element analysis of progressive failure of Carsington embankment. In Selected papers on geotechnical engineering by PR Vaughan (pp. 212-234): Thomas Telford Publishing.
    Pucker, T., & Grabe, J. (2012). Numerical simulation of the installation process of full displacement piles. Computers and Geotechnics, 45, 93-106.
    Qiu, G., Henke, S., & Grabe, J. (2011). Application of a Coupled Eulerian–Lagrangian approach on geomechanical problems involving large deformations. Computers and Geotechnics, 38(1), 30-39. doi:10.1016/j.compgeo.2010.09.002
    Remaître, A. (2008). Morphologie et dynamique des laves torrentielles: Applications aux torrents des Terres Noires du bassin de Barcelonnette (Alpes du Sud). ANRT,
    Scaringi, G., Fan, X., Xu, Q., Liu, C., Ouyang, C., Domènech, G., . . . Dai, L. (2018). Some considerations on the use of numerical methods to simulate past landslides and possible new failures: the case of the recent Xinmo landslide (Sichuan, China). Landslides, 15(7), 1359-1375. doi:10.1007/s10346-018-0953-9
    Seed, H. B. (1979). Considerations in the earthquake-resistant design of earth and rockfill dams. Geotechnique, 29(3), 215-263.
    Shi, X. (2017). Failure Mechanism and Its Induced Movement Simulation of Large-scale Slope (Doctoral dissertation). Retrieved from http://hdl.handle.net/10069/37312
    Shirole, D., Moormann, C., & Sharma, K. G. (2017). A New Continuum Based Model for the Simulation of a Seismically Induced Large-scale Rockslide. Procedia Engineering, 173, 1755-1762. doi:10.1016/j.proeng.2016.12.213
    Song, K., Wang, F., Dai, Z., Iio, A., Osaka, O., & Sakata, S. (2017). Geological characteristics of landslides triggered by the 2016 Kumamoto earthquake in Mt. Aso volcano, Japan. Bulletin of Engineering Geology and the Environment, 78(1), 167-176.
    Song, Y., Gong, J., Gao, S., Wang, D., Cui, T., Li, Y., & Wei, B. (2012). Susceptibility assessment of earthquake-induced landslides using Bayesian network: A case study in Beichuan, China. Computers & Geosciences, 42, 189-199. doi:10.1016/j.cageo.2011.09.011
    Tang, C.-L., Hu, J.-C., Lin, M.-L., Angelier, J., Lu, C.-Y., Chan, Y.-C., & Chu, H.-T. (2009). The Tsaoling landslide triggered by the Chi-Chi earthquake, Taiwan: insights from a discrete element simulation. Engineering Geology, 106(1-2), 1-19.
    Terzaghi, K. (1950). Mechanism of landslides. Application of geology to engineering practice, Geol. Soc. Am, 83-123.
    Wang, C., Hawlader, B., & Perret, D. (2016). Finite element simulation of the 2010 Saint-Jude landslide in Quebec. Paper presented at the Proceedings of the 69th Canadian Geotechnical Conference, Quebec City, Quebec, Canada.
    Wang, F., Cheng, Q., Highland, L., Miyajima, M., Wang, H., & Yan, C. (2009). Preliminary investigation of some large landslides triggered by the 2008 Wenchuan earthquake, Sichuan Province, China. Landslides, 6(1), 47-54.
    Wang, W.-N., Nakamura, H., Tsuchiya, S., & Chen, C.-C. (2002). Distributions of landslides triggered by the Chi-chi Earthquake in Central Taiwan on September 21, 1999. Landslides, 38(4), 318-326.
    Wu, C.-H., Chen, S.-C., & Feng, Z.-Y. (2014). Formation, failure, and consequences of the Xiaolin landslide dam, triggered by extreme rainfall from Typhoon Morakot, Taiwan. Landslides, 11(3), 357-367.
    Xu, C., Ma, S., Tan, Z., Xie, C., Toda, S., & Huang, X. (2017). Landslides triggered by the 2016 Mj 7.3 Kumamoto, Japan, earthquake. Landslides, 15(3), 551-564. doi:10.1007/s10346-017-0929-1
    Xu, W.-J., Xu, Q., & Wang, Y.-J. (2013). The mechanism of high-speed motion and damming of the Tangjiashan landslide. Engineering Geology, 157, 8-20.
    Yamada, M., Kumagai, H., Matsushi, Y., & Matsuzawa, T. (2013). Dynamic landslide processes revealed by broadband seismic records. Geophysical Research Letters, 40(12), 2998-3002. doi:10.1002/grl.50437
    Yang, X., Yang, G., & Yu, T. (2012). Comparison of strength reduction method for slope stability analysis based on ABAQUS FEM and FLAC3D FDM. Paper presented at the Applied Mechanics and Materials.
    Yin, Y., Wang, F., & Sun, P. (2009). Landslide hazards triggered by the 2008 Wenchuan earthquake, Sichuan, China. Landslides, 6(2), 139-152.
    Zhang, S., Zhang, L. M., & Glade, T. (2014). Characteristics of earthquake- and rain-induced landslides near the epicenter of Wenchuan earthquake. Engineering Geology, 175, 58-73. doi:10.1016/j.enggeo.2014.03.012
    Zhang, Y., Chen, G., Zheng, L., Li, Y., & Wu, J. (2013). Effects of near-fault seismic loadings on run-out of large-scale landslide: a case study. Engineering Geology, 166, 216-236.
    Zhang, Y., Yang, J., & Yang, F. (2015). Field investigation and numerical analysis of landslide induced by tunneling. Engineering Failure Analysis, 47, 25-33.
    Zhang, Y., Zhang, J., Chen, G., Zheng, L., & Li, Y. (2015). Effects of vertical seismic force on initiation of the Daguangbao landslide induced by the 2008 Wenchuan earthquake. Soil Dynamics and Earthquake Engineering, 73, 91-102.
    Zhou, J.-w., Cui, P., & Yang, X.-g. (2013). Dynamic process analysis for the initiation and movement of the Donghekou landslide-debris flow triggered by the Wenchuan earthquake. Journal of Asian Earth Sciences, 76, 70-84.
    Zhou, X., & Cheng, H. (2013). Analysis of stability of three-dimensional slopes using the rigorous limit equilibrium method. Engineering Geology, 160, 21-33.
    Zienkiewicz, O. C., Humpheson, C., & Lewis, R. W. (1975). Associated and non-associated visco-plasticity and plasticity in soil mechanics. Geotechnique, 25(4), 671-689.

    下載圖示 校內:2025-01-01公開
    校外:2025-01-01公開
    QR CODE