簡易檢索 / 詳目顯示

研究生: 倪智銳
Ni, Chih-Jui
論文名稱: 新穎材料及結構設計製作有機發光元件
Fabrication of organic light emitting diodes with novel materials and structure design
指導教授: 洪昭南
Hong, Chau-Nan Franklin
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 110
中文關鍵詞: 新穎材料有機發光元件
外文關鍵詞: novel material, organic light emitting diode
相關次數: 點閱:54下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要分為兩部分,第一部分我們使用新穎的螢光材料1,4-dipyrenyl benzene(DPB)進行有機發光元件的製作。首先分析DPB的材料性質,得到DPB的HOMO與LUMO能階值分別為5.66 eV及2.48 eV,能隙值為3.18 eV。接著將DPB應用於下發光元件,當結構為ITO/NPB(50nm)/DPB(30nm)/Bpy-OXD(10nm)/LiF(1nm)/Al(40nm)時,在電流密度80.3 mA/cm2的操作下有最大亮度485 cd/m2,其中Bpy-OXD能有效減小電子注入能障使驅動電壓降低。然而由電洞傳輸層為TPD的下發光元件特性、NPB的PL頻譜、電洞傳輸層為NPB的元件EL頻譜,判斷DPB並非藍光材料,而是屬於紫外光發光材料。上發光元件的製作進一步驗證了此推論。
    第二部分我們使用無機半導體材料氮化鎵作為電子傳輸兼電洞阻擋層製作有機無機異質接面元件,元件結構為IZO or Ag/CuPc:F4-TCNQ(15 nm)/NPB(25 nm)/Alq3(50 nm)/n-GaN/Al(30 nm)。而由單一電子元件Al/GaN/Al的I-V特性發現鋁能夠順利的將電子注入氮化鎵中。此外使用銀作為電極時,元件的I-V趨勢比使用IZO的元件穩定,並在量測元件的EL頻譜後,發現與Alq3的PL頻譜相符合,證實氮化鎵的加入的確可讓載子於Alq3中複合發光。

    This subject is divided into two parts. The first is the fabrication of organic light emitting devices by employing a novel fluorescent material namely 1,4-dipyrenyl benzene(DPB). From material property analysis, we found that the HOMO and LUMO energy level of DPB were measured to be 5.66 and 2.48 eV respectively, and the bandgap was about 3.18 eV. Then, the bottom-emission devices were fabricated with DPB. While the device was in the structure of ITO/NPB(50nm)/DPB(30nm)/Bpy-OXD(10nm)/LiF(1nm) /Al(40nm), a maximum brightness of 485 cd/m2 was obtained. Besides, Bpy-OXD can lower the barrier between the cathode and organic layer, and reduce the turn-on voltage. However, according to the brightness-voltage characteristics, photoluminescence spectrum, and electroluminescence spectrum of devices with different hole-transport layers, we found that DPB was acted as a UV emitter rather than a blue emitter.
    The second part is the fabrication of organic/inorganic heterojunction devices incorporating an inorganic material, gallium nitride. The fabricated device was in the structure of IZO(or Ag)/CuPc:F4-TCNQ(15nm)/NPB(25nm)/Alq3(50nm)/n-GaN/Al(30nm). By measuring current-voltage characteristics for electron-only device, the aluminum electrode could enhance the amount of electron injection. In addition, when the devices were used silver as an anode, the current-voltage tendency was much more stable than that one used IZO. We observed that the electroluminescence spectrum of devices was fitted in with the photoluminescence spectrum of Alq3, and confirmed the carrier confinement by using gallium nitride.

    目錄 中文摘要.............................................. Ⅰ 英文摘要.............................................. Ⅱ 誌謝.................................................. Ⅲ 目錄.................................................. Ⅴ 表目錄................................................ XI 圖目錄................................................ XⅡ 第一章 緒論…………………………………………………… 1 1-1 前言……………………………………… 1 1-1-1 有機發光二極體的歷史簡介… 1 1-1-2 有機發光二極體顯示器的最新發 展……………………………… 2 1-2 研究動機與目的…………………………… 4 第二章 理論基礎與文獻回顧………………………………… 7 2-1 有機發光二極體元件理論………………… 7 2-1-1 有機發光元件結構…………… 7 2-1-2 有機電致發光元件常用的材 料……………………………… 10 2-1-2-1 電洞注入與電洞傳輸材 料………………… 10 2-1-2-2 電子傳輸材料…… 11 2-1-3 載子的注入、傳導與複合…… 12 2-1-3-1 載子的注入………… 12 2-1-3-2 載子的傳輸………… 14 2-1-3-3 載子的複合………… 15 2-2 藍光有機發光元件製作技術……………… 23 2-2-1 Pyrene衍生物為主發光體材料之藍光 有機發光元件………………… 23 2-2-2 Diarylanthracene衍生物為主發光體 材料之藍光有機發光元件…… 24 2-2-3 Distyrylarylene衍生物為主發光體 材料之藍光有機發光元件…… 25 2-2-4 Fluorine衍生物為主發光體材料之藍 光有機發光元件……………… 26 2-3 氮化鎵材料的發展與特性………………… 32 2-3-1 氮化鎵材料的歷史簡介……… 32 2-3-2 氮化鎵材料的性質介紹……… 34 2-4 上發光有機發光元件……………………… 38 2-4-1 上陽極發光有機發光元件…… 39 2-4-2 上陰極發光有機發光元件…… 40 第三章 實驗方法與步驟……………………………………… 43 3-1 實驗流程…………………………………… 43 3-2 實驗系統設計……………………………… 44 3-2-1 高真空熱蒸鍍系統…………… 44 3-2-1-1 抽氣系統…………… 44 3-2-1-2 壓力監控系統……… 44 3-2-1-3 薄膜厚度監控系統… 45 3-2-1-4 系統加熱裝置……… 45 3-2-2 氧電漿處理系統……………… 45 3-2-2-1 抽氣系統…………… 45 3-2-2-2 壓力監控系統……… 46 3-2-2-3 流量控制系統……… 46 3-2-2-4 電漿產生之電源供應 器………………… 46 3-2-3 紫外/可見光分光光譜儀……… 46 3-2-4 光電子譜分析儀……………… 46 3-2-5 有機發光元件量測系統……… 47 3-3 實驗材料…………………………………… 48 3-3-1 基板材料……………………… 48 3-3-2 有機材料……………………… 48 3-3-3 無機材料……………………… 49 3-3-4 金屬材料……………………… 49 3-3-5 基板清洗溶劑及實驗氣體…… 49 3-4 實驗步驟…………………………………… 50 3-4-1 ITO基板、康寧玻璃基板及氮化鎵磊 晶基板濕式前處理之實驗步驟 50 3-4-2 ITO基板之低壓氧電漿處理…… 50 3-4-3 有機與無機薄膜蒸鍍………… 50 3-5 元件特性分析與光譜量測………………… 52 第四章 DPB應用於有機發光元件……………………………… 56 4-1 前言………………………………………… 56 4-2 DPB之材料性質分析……………………… 59 4-2-1 光學性質……………………… 59 4-2-2 能態量測……………………… 61 4-3 以DPB為發光層之下發光有機發光元件製 作…………………………………………… 66 4-4 以DPB為發光層之上發光有機發光元件製 作…………………………………………… 75 第五章 有機-無機異質接面結構製作有機發光元件………… 81 5-1 前言………………………………………… 81 5-2 有機-無機異質接面有機發光元件之電極材料選 擇………………………………………… 84 5-2-1 陽極材料……………………… 84 5-2-2 陰極材料……………………… 85 5-3 有機-無機異質接面有機發光元件之製 作………………………………………… 91 第六章 總結論………………………………………………… 97 第七章 參考文獻……………………………………………… 100 自述與著作………………………………………………………… 110 表目錄 表1-1 各類型顯示器說明與其優缺點比較………………… 6 表2-1 半導體材料參數比較………………………………… 37 表5-1 IZO不同厚度時導電性及光穿透率之比較…………… 87 表5-2 銀不同厚度時導電性及光穿透率之比較…………… 88 圖目錄 圖1-1 OLED、PLED與無機LED的效率進程圖………………… 5 圖1-2 LCD剖面結構圖與各零件的光學穿透率……………… 5 圖2-1 不同的有機發光二極體(OLEDs)結構與各層功能…… 17 圖2-2 具電洞阻擋層的OLED元件實例與工作原理………… 17 圖2-3 具p-i-n結構的OLED元件與所用的分子結構、元件結構和 元件能帶示意圖……………………………………… 18 圖2-4 常用的電洞傳輸材料與分子結構…………………… 19 圖2-5 常用的電洞注入材料與分子結構…………………… 20 圖2-6 常用的電子注入和傳輸材料與分子結構…………… 21 圖2-7 元件中載子在低外加電壓與高外加電壓的注入機 制……………………………………………………… 22 圖2-8 WM excitons和Frenkel excitons圖示和其特性描 述……………………………………………………… 22 圖2-9 藍光OLED對顯示器電能消耗量關係圖……………… 28 圖2-10 CBP和Pyrene衍生物之分子結構……………………… 28 圖2-11 ADN衍生物和TBP之分子結構………………………… 29 圖2-12 ADN衍生物之藍色主發光體材料……………………… 29 圖2-13 Distyrylamine衍生物之分子結構…………………… 30 圖2-14 TBPSF之分子結構……………………………………… 30 圖2-15 TDAF、BDAF及其衍生物之分子結構………………… 31 圖2-16 Fluorene衍生物之分子結構………………………… 31 圖2-17 多層量子井結構的雷射二極體示意圖……………… 36 圖2-18 wurtzite結構示意圖………………………………… 36 圖2-19 zinc-blende結構示意圖……………………………… 37 圖2-20 (a)向下發光元件結構配置 (b)向上發光元件結構配 置……………………………………………………… 42 圖2-21 SONY出產的有機EL顯示器…………………………… 42 圖3-1 高真空熱蒸鍍系統與氧電漿處理系統……………… 53 圖3-2 紫外/可見光分光光譜儀(JASCO V-560)…………… 54 圖3-3 光電子譜分析儀(AC-2)……………………………… 54 圖3-4 有機發光元件量測系統(a)元件電流-電壓-輝度量測系統 (b)元件電致激發光光譜量測系統…………………… 55 圖4-1 DPB分子結構…………………………………………… 58 圖4-2 溶液態DPB的吸收光譜與PL頻譜……………………… 63 圖4-3 薄膜態DPB的吸收光譜與PL頻譜……………………… 63 圖4-4 薄膜態與溶液態DPB的PL頻譜………………………… 64 圖4-5 溶液中分子的激發和發射過程……………………… 64 圖4-6 AC-2量測DPB之HOMO能階表示圖……………………… 65 圖4-7 不同電洞阻擋兼電子傳輸層之下發光元件能帶示意 圖……………………………………………………… 70 圖4-8 Bpy-OXD之分子結構…………………………………… 70 圖4-9 不同電洞阻擋兼電子傳輸材料對下發光元件I-V特性的影 響……………………………………………………… 71 圖4-10 不同電洞阻擋兼電子傳輸材料對下發光元件驅動電壓的影 響(縱座標為對亮度取對數)………………………… 71 圖4-11 不同電洞阻擋兼電子傳輸材料對下發光元件L-V特性的影 響……………………………………………………… 72 圖4-12 電洞傳輸層為TPD之下發光元件能帶示意圖………… 72 圖4-13 不同電洞傳輸材料對下發光元件I-V特性的影響…… 73 圖4-14 不同電洞傳輸材料對下發光元件L-V特性的影響…… 73 圖4-15 NPB之PL與元件EL比較圖……………………………… 74 圖4-16 常用陽極材料之反射率……………………………… 78 圖4-17 上發光元件之能帶示意圖…………………………… 78 圖4-18 上發光與下發光元件之I-V特性圖…………………… 79 圖4-19 上發光與下發光元件之L-V特性圖…………………… 79 圖4-20 不同電洞傳輸材料對上發光元件L-V特性的影響…… 80 圖5-1 有機-無機異質接面元件結構圖……………………… 83 圖5-2 IZO不同厚度時之光穿透率…………………………… 87 圖5-3 銀不同厚度時之光穿透率…………………………… 88 圖5-4 未使用陰極材料的氮化鎵I-V特性圖………………… 89 圖5-5 單一電子元件能帶示意圖…………………………… 89 圖5-6 鋁-氮化鎵接面之I-V特性圖………………………… 90 圖5-7 上陽極發光有機-無機異質接面元件能帶示意圖…… 94 圖5-8 IZO為陽極之有機-無機異質接面元件I-V特性圖…… 94 圖5-9 不同陽極材料對有機-無機異質接面元件I-V特性的影 響……………………………………………………… 95 圖5-10 有無漏電流之有機-無機異質接面元件I-V特性圖… 95 圖5-11 Alq3之PL與異質接面元件EL比較圖………………… 96

    [1] J. R. Sheats, H. Antoniadis, M. Hueschen, W. Leonard, J. Miller, R. Moon, D. Roitman, and A. Stocking, Science, 273, 884 (1996)
    [2] P. Pope, H.P. Kallmann, and P. J. Magnante, Journal of Chemical Physics, 38, 2042 (1963)
    [3] W. Helfrich, and W. G. Schneider, Physical Review Letters, 14, 229 (1965)
    [4] D. F. Williams, and M. Schadt, Proceedings IEEE, 58, 476 (1970)
    [5] C. W. Tang, and S. A. VanSlyke, Applied Physics Letters, 51, 913 (1987)
    [6] J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay, R. H. Friend, P. L. Burns, and A. B. Holmes, Nature, 347, 539 (1990)
    [7] M. J. Flynn, J. Kanicki, A. Badano, and W. R. Eyler, Imaging & Therapeutic Technology, 19, 1653 (1999)
    [8] G. Mueller, Electroluminescence I-Semiconductor and Semimetals Vol. 64, Academic Press, San Diego, CA USA, 209 (2000)
    [9] R. G. Kepler, P. M. Beeson, S. J. Jacobs, R. A. Anderson, M. B. Sinclair, V. S. Valencia, and P. A. Cahill, Applied Physics Letters, 66, 3618 (1995)
    [10] P. W. M. Blom, M. J. M. de Jong, and M. G. van Munster, Physical Review B, 55, R656 (1997)
    [11] P. R. L. Malenfant, C. D. Dimitrakopoulos, J. D. Gelorme, L. L. Kosbar, and T. O. Graham, Applied Physics Letters, 80, 2517 (2002)
    [12] H. Muratal, G. G. Malliaras, M. Uchida, Y. Shen, and Z. H. Kafafi1, Materials Research Society Symposium Proceedings, 665, 227 (2001)
    [13] M. Matsumura, T. Akai, and M. Saito, Japanese Journal of Applied Physics, 35, 3468 (1996)
    [14] D. Troadec, G. Veriot, R. Antony, and A. Moliton, Synthetic Metals, 124, 49 (2001)
    [15] D. Ammermann, A. Böhler, and W. Kowalsky, Annual report, Institut für Hochfrequenztechnik, TU Braunschweig, 48 (1995)
    [16] A. L. Burin, and M. A. Ratner, Journal of Physical Chemistry A, 104, 4704 (2000)
    [17] C. Adachi, S. Tokito, T. Tsutsui, and S. Saito, Japanese Journal of Applied Physics Part 2, 27, L269 (1988)
    [18] C. Adachi, S. Tokito, T. Tsutsui, and S. Saito, Japanese Journal of Applied Physics Part 2, 27, L713 (1988)
    [19] W. B. Im, H. K. Hwang, J. G. Lee, K. Han, and Y. Kim, Applied Physics Letters, 79, 1387 (2001)
    [20] M. Fujihira, L. M. Do, A. Koike, and E. M. Han, Applied Physics Letters, 68, 1787 (1996)
    [21] Y. Sato, S. Ichinosawa, and H. Kanai, IEEE Journal of Selected Topics in Quantum Electronics, 4, 40 (1998)
    [22] W. Rieß, H. Riel, P. F. Seidler, and H. Vestweber, Synthetic Metals, 99, 213 (1999)
    [23] Y. Shirota, M. Kinoshita, and K. Okumoto, Proceedings SPIE, 4464, 203 (2002)
    [24] M. Ikaia, S. Tokitob, Y. Sakamoto, T. Suzuki, and Y. Taga, Applied Physics Letters, 79, 156 (2001)
    [25] M. Pfeiffer, A. Beyer, T. Fritz, and K. Leo, Applied Physics Letters, 73, 3202 (1998).
    [26] J. Blochwitz, M. Pfeiffer, T. Fritz, and K. Leo, Applied Physics Letters, 73, 729 (1998).
    [27] X. Zhou, M. Pfeiffer, J. Blochwitz, A. Werner, A. Nollau, T. Fritz, and K. Leo, Applied Physics Letters, 78, 410 (2001).
    [28] A. Nollau, M. Pfeiffer, T. Fritz, and K. Leo, Journal of Applied Physics, 87, 4340 (2000).
    [29] A. G. Werner, F. Li, K. Harada, M. Pfeiffer, T. Fritz, and K. Leo, Applied Physics Letters, 82, 4495 (2003).
    [30] J. Kido, and T. Matsumoto, Applied Physics Letters, 73, 2866 (1998).
    [31] J. Huang, M. Pfeiffer, A. Werner, J. Blochwitz, K. Leo, S. Liu, Applied Physics Letters, 80, 139 (2002).
    [32] X. Zhou, M. Pfeiffer, J. S. Huang, J. B. Nimoth, D. S. Qin, A. Werner, J. Drechsel, B. Maennig, and K. Leo, Applied Physics Letters, 81, 922 (2002)
    [33] 黃春輝, 李富友, 黃岩誼, 光電功能超薄膜, 北京大學出版社, 北京, 中國, 258 (2001)
    [34] K. Yamashita, T. Mori, T. Mizutani, H. Miyazaki, and T. Takeda, Thin Solid Films, 33, 363 (2000)
    [35] C. Adachi, K. Nagai, and N. Tamoto, Applied Physics Letters, 66, 2679 (1995)
    [36] Y. Shirata, Y. Kuwabara, D. Okuda, R. Okuda, H. Ogawa, H. Inada, T. Wakimoto, H. Nakada, Y. Yonemoto, S. Kawami, and K. Imai, Journal of Luminescence,. 72-74, 985 (1997)
    [37] Y. Shirota, K. Okumoto, H. Inada, Synthetic Metals, 111-112, 387 (2000)
    [38] J. Kido and Y. Iizumi, Chemistry Letters, 26, 963 (1997)
    [39] H. Murata, Z. H. Kafafi, and M. Uchida, Applied Physics Letters, 80, 189 (2002)
    [40] http://www.cam.ac.uk
    [41] J. Kalinowski, Journal of Physics D: Applied Physics, 32, R179 (1999)
    [42] U. Wolf, V. I. Arkhipov, and H. Bässler, Physical Review B, 59, 7507 (1999)
    [43] S. Barth, P. Müller, H. Riel, P.F. Seidler, W. Rieß, H. Vestweber, U. Wolf , and H. Bässler, Synthetic Metals, 111-112, 327 (2000)
    [44] M. Pope, and C. E. Swenberg, Electronic Processes in Organic Crystals and Polymers, Oxford University Press, New York, 379 (1999)
    [45] P. E. Burrows, Z. Shen, V. Bulovic, D. M. McCarty, and S. R. Forrest, Journal of Applied Physics, 79, 7991 (1996)
    [46] http://hackman.mit.edu
    [47] Y. J. Tung, et al., in Proc. Society for Information Display, Seattle, WA, 48 (2004)
    [48] B. Berlman, Handbook on Fluorescence Spestra of Aromatic Molecules, Academic Press, New York (1971)
    [49] W. Sotoyama, et al. in Proc. Society for Information Display, 1294 (2003)
    [50] C. C. Yeh, M. T. Lee, H. H. Chen and Chin H. Chen, in Proc. Society for Information Display, Seattle, WA, 788 (2004)
    [51] J. Shi and C. W. Tang, Applied Physics Letters, 80, 3201 (2002)
    [52] J. Shi, EP 1 156 536 A2 (2001)
    [53] Y. H. Kim, D. C. Shin, S. H. Kim, C. H. Ko, H. S. Yu, Y. S. Chae and S. K. Kwon, Advanced Materials, 13, 1690 (2001)
    [54] W. J. Shen, D. Rajasekhar, C. C. Wu, F. I. Wu, T. H. Liu, H. H. Chen, C. H. Chen and F. C. Shu, Chemistry of Materials, 16, 930 (2004)
    [55] C. Hosokawa, H. Higashi, H. Nakamura and T. Kusumoto, Applied Physics Letters, 67, 3853 (1995)
    [56] H. Higashi, C. Hosokwa and Y. Hironaka, JP 8-239655 (1996)
    [57] M. T. Lee, H. H. Chen, C. H. Tsai, C. H. Liao and C. H. Chen, in Proc. International Meeting on Information Display, Daegu, Korea, 265 (2004)
    [58] C. C. Wu, Y. T. Lin, H. H. Chiang, Y. T. Cho and C. W. Chen, Applied Physics Letters, 81, 577 (2002)
    [59] C. C. Wu, Y. T. Lin, K. T. Wong, R. T. Chen and Y. Y. Chien, Advanced Materials, 16, 61 (2004)
    [60] K. T. Wong, R. T. Chen, C. F. Fang, C. C. Wu and Y. T. Lin, Organic Letters, 7, 1979 (2005)
    [61] T. C. Chao, Y. T. Lin, C. Y. Yang, T. S. Hung, H. C. Chao, C. C. Wu and K. T. Wong, Advanced Materials, 17, 992 (2005)
    [62] A. Saitoh, et al., in Proc. Society for Information Display, Seattle, WA, 150 (2004)
    [63] Bausiere, R. Labrique, F. Seguier, Power Electonic Converters, Springer-Verlag (1993)
    [64] S. Nakamura et al., Applied Physics Letters, 72, 211 (1998)
    [65] W. C. Johnson, J. B. Parsons and M. C. Crew, Journal of Physical Chemistry, 36, 251 (1932)
    [66] H. P. Maruska and J. J. Tietjen, Applied Physics Letters, 15, 367 (1969)
    [67] J. I. Pankove, E. A. Miller, D. Richman and J. E. Berkeyheiser, RCA Review, 32, 383 (1971)
    [68] S. Yoshida, S. Misawa and S. Gonda, The Journal of Vacuum Science Technology, B1, 250 (1983)
    [69] I. Akasaki, H. Amano, Y. Koide, K. Hiramatsu and N. Sawaki, Journal of Crystal Growth, 98, 209 (1989)
    [70] H. Amano, N. Sawaki, I. Akasaki and Y. Toyoda, Applied Physics Letters, 48, 353 (1986)
    [71] S. Nakamura, Japanese Journal of Applied Physics, 30, L1705 (1991)
    [72] S. Nakamura, Y. Harada and M. Seno, Applied Physics Letters, 58, 2021 (1991)
    [73] S. Nakamura, M. Senoh and T. Mukai, Japanese Journal of Applied Physics, 67, 1868 (1995)
    [74] S. Nakamura et. al, Journal of Applied Physics, 35, 74 (1996)
    [75] S. Nakamure, MRS. Bull, 22 (2), 29 (1997)
    [76] T. Detchprohm, K. Hiramatsu, K. Itoh and I. Akasaki, Japanese Journal of Applied Physics, 25, 1924 (1986)
    [77] M. Mizuta, S. Fujieda, Y. Matsumoto and T. Kawamura, Japanese Journal of Applied Physics, 25, L945 (1986)
    [78] M. J. Paisley, Z. Sitar, J. B. Posthill and R. F. Favis, The Journal of Vacuum Science Technology, A7, 701 (1989)
    [79] R. C. Powell, N. E. Lee, Y. W. Kim and J. E. Greene, Journal of Applied Physics, 73, 189 (1993).
    [80] I. Barin, O. Knacke, Thermochemical Propertis of Inorganic Substances, Springer, Berlin-Heidelberg, New York (1977)
    [81] J. Karpinski, J. Jun, S. Porowski, Journal of Crystal Growth, 66, 1 (1984)
    [82] J. Karpinski, S. Porowski, Journal of Crystal Growth (Netherlands), 66, 11 (1984)
    [83] E. Lashmi, B. Mathur, A. B. Bhattacharya and V. P. Bhargava, Thin Solid Films, 74, 77 (1980)
    [84] B. C. Chung and M. Hershenzon, Journal of Applied Physics, 72, 651 (1992)
    [85] T. Lei and T. D. Moustakas, Journal of Applied Physics, 71, 4933 (1992)
    [86] H. J. Hovel and J. J. Cuomo, Applied Physics Letters, 20, 71 (1972)
    [87] B. B. Kosicki, R. J. Powell and J. C. Burgiel, Physical Review Letters, 24, 1421 (1970)
    [88] S. Bloom, G. Harbeke, E. Meier and I. B. Ortenburger, Physica Status Solidi B, 66, 161 (1974)
    [89] D. R. Baigent, R. N. Marks, N. C. Greenham, R. H. Friend, S. C. Moratti and A. B. Holmes, Applied Physics Letters, 65, 2636 (1994)
    [90] P. Servati, S. Prakash, A. Nathan and C. Py, The Journal of Vacuum Science Technology A, 20, 1347 (2002)
    [91] T. Ishibashi, J. Yamada, T. Hirano, Y. Iwase, Y. Sato, R. Nakagawa, M. Sekiya, T. Sasaoka and T. Urabe, Japanese Journal of Applied Physics, Part 1: Regular Papers and Short Notes and Review Papers, 45, 4392 (2006)
    [92] X. Zhou, M. Pfeiffer, J. S. Huang, J. Blochwith-Nimoth, D. S. Qin, A. Werner, J. Drechsel, B. Maenning and K. Leo, Applied Physics Letters, 81, 922 (2002)
    [93] C. Qiu, H. Peng, H. Chen, Z. Xie, M. Wong and H. S. Kwok, IEEE Transactions on Electron Devices, 51, 1207 (2004)
    [94] L. S. Hung, and J. Madathil, Thin Solid Films, 410, 101 (2002)
    [95] V. Bulovic´, P. Tian, P. E. Burrows, M. R. Gokhale and S. R. Forrest, Applied Physics Letters, 70, 2954 (1997)
    [96] T. Dobbertin, M. Kroeger, D. Heithecker, D. Schneider, D. Metzdorf, H. Neuner, E. Becker, H. H. Johannes and W. Kowalskya, Applied Physics Letters, 82, 284 (2003)
    [97] T. Dobbertin, O. Werner, J. Meyer, A. Kammoun, D. Schneider, T. Riedl, E. Becker, H. H. Johannes and W. Kowalsky, Applied Physics Letters, 83, 5071 (2003)
    [98] G. Gu, V. Bulović, P. E. Burrows, S. R. Forrest and M. E. Thompson, Applied Physics Letters, 68, 2606 (1996)
    [99] L. S. Hung, C. W. Tang, M. G. Mason, P. Raychaudhuri and J. Madathil, Applied Physics Letters, 78, 544 (2001)
    [100] C. W. Chen, P. Y. Hsieh, H. H. Chiang, C. L. Lin, H. M. Wu and C. C. Wu, Applied Physics Letters, 83, 5127 (2003)
    [101] H. Riel, S. Karg, T. Beierlein, B. Ruhstaller and W. Rieß, Applied Physics Letters, 82, 466 (2003)
    [102] C. H. Yanga, T. F. Guob and I. W. Sun, Journal of Luminescence, 124, 93 (2007)
    [103] A. Sharma and S. G. Schulman, Introduction to Fluorescence Spectroscopy, John Wiley & Sons, Inc., New York (1999)
    [104] D. A. Neamen, Semiconductor Physics & Devices, McGraw-Hill, Inc., Boston, USA, 743 (2002)
    [105] M. G. Mason, L. S. Hung, C. W. Tang, S. T. Lee, K. W. Wong, M. Wang, Journal of Applied Physics, 86, 1688 (1999)
    [106] K. Furukawa, Y. Terasaka, H. Ueda, M. Matsumura, Synthetic Metals, 91, 99 (1997)
    [107] M. Ichikawa, T. Kawaguchi, K. Kobayashi, T. Miki, T. Obara, K. Furukawa, T. Koyama and Y. Taniguchi, Proceedings of SID’05, Boston, USA (2005)
    [108] L. D. Wang, C. F. Qiu and H. S. Kwok, International Display Research Conference, Palm Beach, FL, 43 (2000)
    [109] B. Maennig, M. Pfeiffer, A. Nollau, X. Zhou, K. Leo and P. Simon, Physical Review B, 64, 195208 (2001)
    [110] E. W. Forsythe, M. A. Abkowitz and Y. Gao, Journal of Physical Chemistry B, 104, 3948 (2000)
    [111] H. Cao, X. C. Gao, B. W. Zhang, J. Zhai, C. H. Huang and Y. Cao, Synthetic Metals, 96, 191 (1998)
    [112] Y. Qiu, Y.D. Gao, P. Wei and L. D. Wang, Applied Physics Letters, 80, 2628 (2002)
    [113] F. S. Li, Z. J. Chen, W. Wei, Q. H. Gong, Organic Electronics, 6, 237 (2005)
    [114] X. H. Yang, Y. L. Hua, F. Teng, Y. B. Hou, X. R. Xu and Z. H. Huang, Chinese Physics Letters, 14, 946 (1997)
    [115] K. Zeng and F. Zhu, Thin Solid Films, 443, 60 (2003)

    下載圖示 校內:2018-08-27公開
    校外:2018-08-27公開
    QR CODE