| 研究生: |
李冠篁 Lee, Kuan-Huang |
|---|---|
| 論文名稱: |
可壓縮凹槽流之實驗研究 An Experimental Study on Compressible Cavity Flows |
| 指導教授: |
張克勤
Chang, Keh-Chin |
| 共同指導教授: |
鍾光民
Chung, Kung-Ming |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
| 論文出版年: | 2016 |
| 畢業學年度: | 105 |
| 語文別: | 英文 |
| 論文頁數: | 119 |
| 中文關鍵詞: | 可壓縮流 、圓柱形凹槽 、偏轉矩形凹槽 、自我維持震盪 、共振抑制 |
| 外文關鍵詞: | compressible flow, cylindrical cavity, rectanglar cavity at yaw, self-sustained oscillation, resonance suppression |
| 相關次數: | 點閱:124 下載:18 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
改善空氣動力特性是飛具設計的一大重點。氣流經過凹槽如彈藥艙時會產生複雜的流體動態,高長深比之凹槽會導致阻力的增加並且阻礙內部儲存物的投放。氣流流經低長深比之凹槽時,凹槽前端分離產生的剪力層會直接衝擊凹槽後面,受剪力層於凹槽末端產生的擾動傳遞至上游並形成回饋機制,導致強烈的自我維持震盪,影響飛行器結構體的安全。雖然已有大量關於凹槽流的研究,為了對流場動態有更深入的洞見則須更進一步的探討,其中包含凹槽的幾何效應及流場條件的影響。
本研究在穿音速風洞中進行可壓縮流於圓柱形凹槽及具轉角之矩形凹槽的實驗研究。實驗條件之自由流馬赫數為0.64至0.83,其紊流邊界層厚度約為7毫米。圓柱形凹槽之直徑深度比為4.43至43.00,而矩形凹槽的長深比為4.43至21.50、轉角為5度至45度。實驗結果亦與無轉角之矩形凹槽的研究進行比較。動態壓力傳感器沿著凹槽的中心線及跨距貼平表面分布進行壓力量測,實驗結果除了進行平均值及擾動量的統計分析外,也利用了快速Fourier轉換得到功率譜密度的分布來探討凹槽的流場動態,並將功率譜密度結果與文獻中典型的Rossiter's formula比較。
圓柱形凹槽流的類型分界與矩形凹槽流大致相同,轉角亦不會影響矩形凹槽流之類型。比起過渡型的矩形凹槽流,過渡型的圓柱形凹槽流會有較高的表面壓力係數,但是兩者的壓力梯度差異並不大。圓柱形凹槽產生的最大壓力擾動比矩形凹槽低,當增加矩形凹槽的轉角,亦減緩凹槽後端的擴張及表面壓力的最大擾動。邊界層厚度與凹槽深度比只對接近後凹槽面之表面壓力係數有明顯影響,包含流場在凹槽後端的擴張及表面壓力的最大擾動。在自我維持震盪特性方面,經過最佳化分析,不管是圓柱形凹槽或有轉角之矩形凹槽,其延遲時間以及對流速度與自由流速度比皆低於Rossiter's formula的參數值。此外對一大轉角之矩形凹槽流,流場受較低的Rossiter模態主導,而且可能完全破壞自我維持的震盪。本研究對凹槽流的流場動態有更廣的瞭解,並且支持更進一步的探討,像是時頻分析、計算流體力學、震盪抑制的設計等。
Improvement of the aerodynamic performance is one of the major goals for aircraft design. A flow over cavity such as the weapon bay of an aircraft suffers from its complex fluid dynamics. A cavity with a large ratio of length to depth induces drag and inhibits the deployment of storage. For a cavity with a small ratio of length to depth, the shear layer separates from the leading edge and impinges on its rear face. The feedback mechanism with the upstream propagation of the disturbance leads to strong self-sustained oscillation, which results in unsteady structural loading. There have been enormous studies on the rectangular cavities. However, further investigation is inevitable for more insight, including the geometric effect and the flow condition.
The experimental study determines the characteristics for a compressible turbulent flow over cylindrical cavities and rectangular cavities at yaw. The freestream Mach number ranges from 0.64 to 0.83 and the thickness of incoming turbulent boundary layer is about 7 mm. The ratio of diameter to depth for the cylindrical cavities are 4.43--43.00. The ratio of length to depth and the yaw angles for the rectangular cavities are 4.43--21.50 and 5 deg.--45 deg., respectively. The results for unswept rectangular cavities are used for comparison. Flush-mounted dynamic pressure transducers for mean and fluctuating pressure measurements are installed along the streamwise and spanwise directions. The self-sustained oscillation phenomenon is examined by spectral density analysis with fast Fourier transform. The empirical constants are also evaluated and compared with those in the classical Rossiter's formula.
The present study shows that the boundaries of flow types for cylindrical cavities are similar to those for rectangular cavities. Yaw angle for a rectangular cavity also has a minor effect on the flow types. A transitional cylindrical cavity has a higher surface pressure coefficient near the rear face than a transitional rectangular cavity, but there is a minor difference on the amplitude of pressure gradient. The maximum pressure fluctuations that generated by the cylindrical cavities are less than those generated by the rectangular cavities. Yaw angle of a rectangular cavity alleviates the trailing-edge expansion and surface pressure fluctuation near the rear corner. The ratio of the incoming boundary layer thickness to the depth of the cavity has an evident influence only near the rear corner of cavity, including the trailing-edge expansion and the maximum pressure fluctuation. For the empirical constants, there are smaller time lags and lower ratios of convection velocity to freestream velocity for either cylindrical cavities or rectangular cavities at yaw than those used in the Rossiter's formula. The power spectral density shows that low mode dominates for a rectangular cavity with large yaw angle.
Ahuja, K. K., & Mendoza, J. (1995). Effects of cavity dimensions, boundary layer, and temperature on cavity noise with emphasis on benchmark data to validate computational aeroacoustic codes. NASA CR-4653.
Bari, A., & Chambers, F. (1993). Shear layer resonance over open cavities at angles to the flow direction. AIAA Paper, 93-4397.
Bendat, J. S., & Piersol, A. G. (2011). Random data: analysis and measurement procedures. John Wiley and Sons.
Beresh, S. J., Wagner, J. L., & Casper, K. M. (2016). Compressibility effects in the shear layer over a rectangular cavity. Journal of Fluid Mechanics, 808, 116-152. doi: 10.1017/jfm.2016.540
Bilanin, A. J., & Covert, E. (1973). Estimation of possible excitation frequencies for shallow rectangular cavities. AIAA Journal, 11(3), 347-351. doi: 10.2514/3.6747
Charwat, A. F. (1961). An investigation of separated flows-part i: The pressure field. Journal of the Aerospace Sciences, 28(6), 457-470.
Chung, K.-M. (2000). Characteristics of transonic rectangular cavity flows. Journal of Aircraft, 37(3), 463-468. doi: 10.2514/2.2620
Chung, K.-M. (2001). Three-dimensional effect on transonic rectangular cavity flows. Experiments in fluids, 30(5), 531-536.
Chung, K.-M. (2002). Investigation on transonic convex-corner flows. Journal of Aircraft, 39(6), 1014-1018.
Chung, K.-M. (2003). Characteristics of compressible rectangular cavity flows. Journal of Aircraft, 40(1), 137-142. doi: 10.2514/2.3068
Chung, K.-M., Lee, K.-H., & Chang, K.-C. (2016). Characteristics of compressible flow over cylindrical cavities. Journal of Aircraft, 53(5), 1565-1567.
Chung, K.-M., & Lu, F. (1990). Shock-tube calibration of a fast-response pressure transducer. AIAA Paper, 90-1399.
Cooley, J. W., & Tukey, J. W. (1965). An algorithm for the machine calculation of complex fourier series. Mathematics of Computation, 19(90), 297-301.
Corcos, G. M. (1963). Resolution of pressure in turbulence. The Journal of the Acoustical Society of America, 35(2), 192-199.
Czech, M., Crouch, J., Stoker, R., Strelets, M., & Garbaruk, A. (2006). Cavity noise generation for circular and rectangular vent holes. AIAA Paper, 2006-2508.
Czech, M., Savory, E., Toy, N., & Mavrides, T. (2001). Flow regimes associated with yawed rectangular cavities. The Aeronautical Journal, 105(1045), 125-134.
Delprat, N. (2006). Rossiter’s formula: A simple spectral model for a complex amplitude modulation process? Physics of Fluids, 18(7), 071703.
Delprat, N. (2010). Low-frequency components and modulation processes in compressible cavity flows. Journal of Sound and Vibration, 329(22), 4797-4809. doi: 10.1016/j.jsv.2010.05.013
Dewar, W. G. (2002). Experimental investigation of the flow characteristics within a shallow wall cavity for both laminar and turbulent upstream boundary layers (Unpublished doctoral dissertation).
Disimile, P. J., & Orkwis, P. D. (1998). Sound-pressure-level variations in a supersonic rectangular cavity at yaw. Journal of Propulsion and Power, 14(3), 392-398. doi:
10.2514/2.5292
Disimile, P. J., Toy, N., & Savory, E. (1998). Pressure oscillations in a subsonic cavity at yaw. AIAA Journal, 36(7), 1141-1148. doi: 10.2514/2.521
Dybenko, J., & Savory, E. (2008). An experimental investigation of turbulent boundary layer flow over surface-mounted circular cavities. Proceedings of the Institution of
Mechanical Engineers, Part G: Journal of Aerospace Engineering, 222(1), 109-125.
East, L. (1966). Aerodynamically induced resonance in rectangular cavities. Journal of Sound and Vibration, 3(3), 277-287.
Faure, T. M., Adrianos, P., Lusseyran, F., & Pastur, L. (2007). Visualizations of the flow inside an open cavity at medium range reynolds numbers. Experiments in Fluids, 42(2),
169-184.
Flaherty, W., Reedy, T. M., Elliott, G. S., Austin, J. M., Schmit, R. F., & Crafton, J. (2014). Investigation of cavity flow using fast-response pressure-sensitive paint. AIAA Journal, 52(11), 2462-2470. doi: 10.2514/1.j052864
Gai, S. L., Soper, T. J., & Milthorpe, J. F. (2008). Shallow rectangular cavities at low speeds including effects of yaw. Journal of Aircraft, 45(6), 2145-2150. doi: 10.2514/1.37927
Gaudet, L., & Winter, K. G. (1973). Measurements of the drag of some characteristic aircraft excrescences immersed in turbulent boundary layers. RAE-TM-AERO-1538.
Gharib, M., & Roshko, A. (1987). The effect of flow oscillations on cavity drag. Journal of Fluid Mechanics, 177, 501-530.
Grace, S. M., Dewar, W. G., & Wroblewski, D. E. (2004). Experimental investigation of the flow characteristics within a shallow wall cavity for both laminar and turbulent
upstream boundary layers. Experiments in Fluids, 36(5), 791-804. doi: 10.1007/s00348-003-0761-3
Gramann, R. A., & Dolling, D. S. (1990). Detection of turbulent boundary-layer separation using fluctuating wall pressure signals. AIAA Journal, 28(6), 1052-1056.
Grottadaurea, M., & Rona, A. (2008). The radiating pressure field of a turbulent cylindrical cavity flow. AIAA Paper, 2008-2852.
Haigermoser, C., Scarano, F., & Onorato, M. (2009). Investigation of the flow in a circular cavity using stereo and tomographic particle image velocimetry. Experiments in Fluids, 46(3), 517-526. doi: 10.1007/s00348-008-0577-2
Handa, T., Miyachi, H., Kakuno, H., Ozaki, T., & Maruyama, S. (2014). Modeling of a feedback mechanism in supersonic deep-cavity flows. AIAA Journal, 53(2), 420-425.
Heller, H. H., & Bliss, D. B. (1975). The physical mechanism of flow-induced pressure fluctuations in cavities and concepts for their suppression. In 2nd aeroacoustics conference (p. 491).
Heller, H. H., Holmes, D. G., & Covert, E. E. (1971). Flow-induced pressure oscillations in shallow cavities. Journal of sound and Vibration, 18(4), 545-553.
Hering, T., & Savory, E. (2007). Flow regimes and drag characteristics of yawed elliptical cavities with varying depth. Journal of Fluids Engineering, 129(12), 1577-1583.
Hirahara, H., Kawahashi, M., Khan, M. U., & Hourigan, K. (2007). Experimental investigation of fluid dynamic instability in a transonic cavity flow. Experimental Thermal and Fluid Science, 31(4), 333-347. doi: 10.1016/j.expthermflusci.2006.05.007
Hiwada, M., Kawamura, T., Mabuchi, I., & Kumada, M. (1983). Some characteristics of flow pattern and heat transfer past a circular cylindrical cavity. Bulletin of JSME, 26(220),
1744-1752.
Kaufman, I., Louis, G., Maciulaitis, A., & Clark, R. L. (1983). Mach 0.6 to 3.0 flows over rectangular cavities. AFWAL-TR-82-3112, 292.
Kegerise, M. A., Spina, E. F., Garg, S., & Cattafesta III, L. N. (2004). Mode-switching and nonlinear effects in compressible flow over a cavity. Physics of Fluids, 16(3), 678-687.
Khadivi, T., & Savory, E. (2013). Experimental and numerical study of flow structures associated with low aspect ratio elliptical cavities. Journal of Fluids Engineering,
135(4), 041104.
Kline, S. J., & McClintock, F. A. (1953). Describing uncertainties in single-sample experiments.
Mechanical Engineering, 75(1), 3-8.
Krishnamurty, K. (1955). Acoustic radiation from two-dimensional rectangular cutouts in aerodynamic surfaces. NACA TN-3487.
Lada, C., & Kontis, K. (2011). Experimental studies of open cavity configurations at transonic speeds with flow control. Journal of Aircraft, 48(2), 719-724.
Lawson, S. J., & Barakos, G. N. (2011). Review of numerical simulations for high-speed, turbulent cavity flows. Progress in Aerospace Sciences, 47(3), 186-216. doi: 10.1016/
j.paerosci.2010.11.002
Lee, B. H. K. (2010). Pressure waves generated at the downstream corner of a rectangular cavity. Journal of Aircraft, 47(3), 1064-1066. doi: 10.2514/1.46127
Lee, B. H. K., Orchard, D. M., & Tang, F. C. (2009). Flow past a yawed rectangular cavity in transonic and low supersonic flows. Journal of Aircraft, 46(5), 1577-1583. doi: 10.2514/1.40729
Malone, J., Debiasi, M., Little, J., & Samimy, M. (2009). Analysis of the spectral relationships of cavity tones in subsonic resonant cavity flows. Physics of Fluids, 21(5),
055103. doi: 10.1063/1.3139270
Marsden, O., Bailly, C., Bogey, C., & Jondeau, E. (2012). Investigation of flow features and acoustic radiation of a round cavity. Journal of Sound and Vibration, 331(15),
3521-3543.
Maull, D. J., & East, L. F. (1963). Three-dimensional flow in cavities. Journal of Fluid Mechanics, 16(4), 620-632.
McGregor, O. W., & White, R. A. (1970). Drag of rectangular cavities in supersonic and transonic flow including the effects of cavity resonance. AIAA Journal, 8(11), 1959-
1964. doi: 10.2514/3.6032
Miau, J. J., Cheng, J., Chung, K.-M., & Chou, J. (1998). The effect of surface roughness on the boundary layer transition. In 7th international symposium in flow modeling and turbulent measurement (p. 609-616). Tainan, Taiwan.
Mills, R. D. (1961). Flow in rectangular cavities (Unpublished doctoral dissertation).
Mironov, D. S. (2008). Investigation of flow over shallow cavity using wavelet and hibert huang transform (Unpublished master’s thesis).
Mironov, D. S. (2011). An experimental study of pressure fluctuations generated by an open shallow cavity performed using joint time-frequency techniques of data analysis.
Thermophysics and Aeromechanics, 18(3), 369-379.
Murray, N., Sällström, E., & Ukeiley, L. (2009). Properties of subsonic open cavity flow fields. Physics of Fluids, 21(9), 095103.
Murray, R. C., & Elliott, G. S. (2001). Characteristics of the compressible shear layer over a cavity. AIAA Journal, 39(5), 846-856. doi: 10.2514/2.1388
Olsman, W. F. J., & Colonius, T. (2011). Numerical simulation of flow over an airfoil with a cavity. AIAA Journal, 49(1), 143-149. doi: 10.2514/1.j050542
Parthasarathy, S. P., Cho, Y. I., & Back, L. H. (1984). Aerodynamic sound generation induced by flow over small, cylindrical cavities. AIAA Paper, 84-2258.
Parthasarathy, S. P., Cho, Y. I., & Back, L. H. (1985). Sound generation by flow over relatively deep cylindrical cavities. The Journal of the Acoustical Society of America,
78(5), 1785-1795.
Pereira, J., & Sousa, J. (1995). Experimental and numerical investigation of flow oscillations in a rectangular cavity. Journal of Fluids Engineering, 117, 68-74.
Plentovich, E. B., Stallings Jr, R. L., & Tracy, M. B. (1993). Experimental cavity pressure measurements at subsonic and transonic speeds. static-pressure results. NASA TP-3358.
Plumblee, H. E., Gibson, J. S., & Lassiter, L. W. (1962). A theoretical and experimental investigation of the acoustic response of cavities in an aerodynamic flow. WADD-TR-61-75.
Powell, A. (1961). On the edgetone. The Journal of the Acoustical Society of America, 33(4), 395-409.
Reim, B., Gai, S. L., Milthorpe, J., & Kleine, H. (2009). An investigation into supersonic swept cavity flows. In Shock waves (p. 1219-1224). Springer.
Rockwell, D., & Naudascher, E. (1978). Review—self-sustaining oscillations of flow past cavities. Journal of Fluids Engineering, 100(2), 152-165.
Roshko, A. (1955). Some measurements of flow in a rectangular cutout. NACA TN-3488.
Rossiter, J. E. (1960). A preliminary investigation into armament bay buffet at subsonic and transonic speeds. Royal Aircraft Establishment, TM AERO, 679.
Rossiter, J. E. (1964). Wind tunnel experiments on the flow over rectangular cavities at subsonic and transonic speeds (Tech. Rep.). Ministry of Aviation; Royal Aircraft Establishment; RAE Farnborough.
Rowley, C. W., Colonius, T., & Basu, A. J. (2002). On self-sustained oscillations in two dimensional compressible flow over rectangular cavities. Journal of Fluid Mechanics, 455. doi: 10.1017/s0022112001007534
Sarohia, V. (1977). Experimental investigation of oscillations in flows over shallow cavities.
AIAA Journal, 15(7), 984-991. doi: 10.2514/3.60739
Savory, E., Toy, N., Disimile, P. J., & Dimicco, R. G. (1993). The drag of three-dimensional rectangular cavities. In Further developments in turbulence management (p. 325-346). Springer.
Sinha, S. N., Gupta, A. K., & Oberai, M. (1982). Laminar separating flow over backsteps and cavities. ii-cavities. AIAA Journal, 20(3), 370-375.
Smith, D. L., & Shaw, L. L. (1975). Prediction of the pressure oscillations in cavities exposed to aerodynamic flow. AFFDL-TR-75-34.
Stallings Jr, R. L., & Wilcox Jr, F. J. (1987). Experimental cavity pressure distributions at supersonic speeds. NASA TP-2683.
Tam, C. K. W., & Block, P. J. W. (1978). On the tones and pressure oscillations induced by flow over rectangular cavities. Journal of Fluid Mechanics, 89(02), 373-399.
Torda, T. P., & Patel, B. R. (1969). Investigations of flow in triangular cavities. AIAA Journal, 7(12), 2365-2367.
Toy, N., Disimile, P. J., & Savory, E. (1999). Local shear stress measurements within a rectangular yawed cavity using liquid crystals. Optical Diagnostics in Engineering,
3(1), 91-101.
Tracy, M. B., & Plentovich, E. B. (1997). Cavity unsteady-pressure measurements at subsonic and transonic speeds. NASA TP-3669.
Unalmis, O. H. (2004). Cavity oscillation mechanisms in high-speed flows. AIAA Journal, 42(10), 2035-2041.
Unalmis, O. H., Clemens, N. T., & Dolling, D. S. (2001). Experimental study of shearlayer/ acoustics coupling in mach 5 cavity flow. AIAA Journal, 39(2), 242-252. doi:
10.2514/2.1319
Verdugo, F. R., Guitton, A., & Camussi, R. (2012). Experimental investigation of a cylindrical cavity in a low mach number flow. Journal of Fluids and Structures, 28, 1-19. doi: 10.1016/j.jfluidstructs.2011.10.009
Zhang, X., & Edwards, J. A. (1990). An investigation of supersonic oscillatory cavity flows driven by thick shear layers. The Aeronautical Journal, 94(940), 355-364.