簡易檢索 / 詳目顯示

研究生: 朱永靖
Chu, Yung-Ching
論文名稱: 具交錯鯡魚骨式溝槽的髮夾彎形及S形流道中的流體混合
Fluid mixing in hairpin-shaped channel and S-shaped channel with staggered herringbone grooves
指導教授: 吳志陽
Wu, Chih-Yang
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 77
中文關鍵詞: 交錯鯡魚骨式溝槽
外文關鍵詞: staggered herringbone grooves
相關次數: 點閱:67下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究以數值模擬探討結合具交錯鲱魚骨式溝槽的直流道與彎曲流道對微混合器之績效的影響。先藉比較實驗與數值模擬結果,檢視數值模擬的可靠性。本研究提出的微混合器藉兩種機制增進混合。其一為交錯鯡魚骨式溝槽引起的流體間介面拉伸與摺疊,另一則是在彎曲流道中離心力所導致的渦流。結果顯示,在大範圍的雷諾數下,將具交錯鲱魚骨式溝槽直流道排列於蜿蜒流道前面比排列在彎曲流道中間(換言之,髮夾彎形流道)與排列於蜿蜒流道後面所得到的混合效果好。另外,發現增加後接蜿蜒流道的高度,可以降低壓降與增加混合效果。

    The effects of combination of straight channels with staggered herringbone grooves and curved channels on the performance of micromixers are investigated by numerical simulations. The validity of numerical simulations is examined by comparing the numerical and experimental results. There are to mechanisms for mixing enhancement in the proposed micromixers. One is the stretch and fold of fluid interface induced by staggered herringbone grooves and the other is the vortices caused by centrifugal force in the curved channel. The results obtained for a wide range of Reynolds numbers show that the mixing efficiency of the micromixer with the staggered herringbone grooves on straight channel bottom arranged before the serpentine channel is better than that of the micromixers with the staggered herringbone grooves on straight channel bottom arranged between curved channel (i.e., hairpin-shaped channel) and the staggered herringbone grooves on straight channel bottom arranged after the serpentine channel. Besides, it is found that increasing the height of the serpentine channel reduces the pressure drop and increases mixing efficiency.

    摘要 i Abstract ii 誌謝 iii 目錄 iv 表目錄 vi 圖目錄 vii 符號說明 xii 第一章 緒論 1 1-1 研究背景: 1 1-2 文獻回顧 1 1-3 研究動機 4 1-4 本文架構 5 第二章 流道外形設計及數值模擬 6 2-1 微混合器之設計 6 2-1-1 具交錯鯡魚骨式溝槽的髮夾彎形微混合器 7 2-1-2後接S形流道的交錯鯡魚骨式溝槽微混合器 7 2-1-3 具交錯鯡魚骨式溝槽的直形微混合器 7 2-2 基本假設 8 2-3 統御方程式與邊界條件 8 2-4 邊界條件 9 2-5 無因次分析 10 2-5-1 方程式的無因次化 10 2-5-2 邊界條件的無因次化 11 2-6 數值模擬 11 2-6-1 CFD-GEOM建立微混合器之幾何形狀與網格 12 2-6-2 CFD-ACE+模擬求解 12 2-6-3 CFD-View後處理 12 2-7 混合指標 13 第三章 微型混合器的製作與觀測 14 3-1 製作步驟 14 3-1-1 光罩設計 14 3-1-2 母模製作 14 3-1-3 翻模 17 3-1-4 氧電漿處理與出入口管線接合 17 3-2 實驗觀測 17 3-2-1 工作流體與微量式注射幫浦 17 3-2-2 影像擷取 18 第四章 結果與討論 19 4-1 簡介 19 4-2 網格測試 19 4-3 數值結果與實驗結果之比較 20 4-4溝槽與彎曲流道相對位置混合度與壓降的影響 20 4-5後接S形流道高度(H)不同時造成的影響 25 第五章 結論 27 參考文獻 28

    [1] A. Manz, N. Graber and H. M. Widmer, “Miniaturized Total Chemical Analysis System: a Novel Concept for Chemical Sensing,” Sensor and Actuators, B: Chemical, Vol. 1, pp. 244-248, 1990.
    [2] N. T. Nguyen, and Z. Wu, “Micromixers – a Review,” Journal of Micromechanics and Microengineering, Vol. 15, No. 1, pp. R1-16, 2005.
    [3] A. A. Deshmukh, D. Liepmann and A. P. Pisano, “Continuous Micromixer With Pulsatile Micropumps,” Technical Digest of the IEEE Solid State Sensor and Actuator Workshop, pp.73-76, 2000.
    [4] Y. K. Lee, J. Deval, P. Tabeling and C. M. Ho, “Chaotic Mixing in Electrokinetically and Pressure Driven Micro Flows,” Proceedings 14th IEEE Workshop on Micro Electro Mechanical Systems, pp. 483-486, 2001.
    [5] Z. Yang, S. Matsumoto, H. Goto, M. Matsumoto and R. Maeda “Ultrasonic Micromixer for Microfluidic Systems,” Sensor and Actuators A: Physical, Vol. 93, pp. 266-272, 2001.
    [6] C. Y. Lee, C. L. Chang, Y. N. Wang and L. M. Fu, “Microfluidic Mixing: A Review,” International Journal of Molecular Sciences, Vol. 12, pp. 3263-3287, 2011.
    [7] M. Koch, D. Chatelain, A. G. Evans and A. Brunnschweiler, “Two Simple Micromixers Based on Silicon,” Journal of Micromechanics and Microengineering, Vol. 8, No. 2, pp. 123-126, 1998.
    [8] C. Hung, K. C. Wang and C. K. Chyou, “Design and Flow Simulation of a New Micromixer,” JSME International Journal Series B, Vol.48, No.1, pp.17-24, 2005.
    [9] K. Y. Tung, C. C. Li and J.T. Yang, “Mixing and Hydrodynamic Analysis of a Droplet in a Planar Serpentine Micromixer,” Microfluid and Nanofluid, Vol. 7, pp. 545-557, 2009.
    [10] R. H. Liu, M. A. Stremler, K. V. Sharp, M. G. Olsen, J. G. Santiago, R. J. Adrian, H. Aref and D. J. Beebe, “Passive Mixing in a Three-Dimensional Serpentine Microchannel,” Journal of Microelectromechanical Systems, Vol. 9, No. 2, pp. 190-197, 2000.
    [11] V. Mengeaud, J. Josserand and H. H. Girault, “Mixing Processes in a Zigzag Microchannel: Finite Element Simulations and Optical Study,” Analytical Chemistry, Vol. 83, No. 22, pp. 4664-4666, 2003.
    [12] Y. Yamaguchi, F. Takagi, T. Watari, K. Yamashita, H. Nakamura, H. Shimizu and H. Maeda, “Interface Configuration of the Two Layered Laminar Flow in a Curved Microchannel,” Chemical Engineering Journal, Vol. 101, pp. 367-372, 2004.
    [13] S. Hossain, M. A. Ansari and K. Y. Kim, “Evaluation of the Mixing Performance of Three Passive Micromixers,” Chemical Engineering Journal, Vol. 150, pp. 492-501, 2009.
    [14] C.-Y. Wu and R.-T. Tsai, “Fluid Mixing via Multidirectional Vortices in Converging–Diverging Meandering Microchannels with Semi-Elliptical Side Walls,” Chemical Engineering Journal, Vol. 217, pp. 320-328, 2013.
    [15] M. A. Ansari, K. Y. Kim, K. Anwar and S. M. Kim, “A Novel Passive Micromixer Based on Unbalanced Splits and Collisions of Fluid Streams,” Journal of Micromechanics and Microengineering, Vol. 20, pp. 1-10, 2010.
    [16] A. D. Stroock, S. K. W. Dertinger, A. Ajdari, I. Mezic, H. A. Stone, G. M. Whitesides, “Chaotic Mixer for Microchannels,” Science, Vol. 295, pp. 647-651, 2002.
    [17] A. D. Stroock, S. K. W. Dertinger, G. M.Whitesides, A. Ajdari, “Patterning Flows Using Grooved Surfaces,” Analytical Chemistry, Vol. 74, pp. 5306-5312, 2002.
    [18] D. S. Kim, S. W. Lee, T. H. Kwon and S. S. Lee, “A Barrier Embedded Chaotic Micromixer,” Journal of Micromechanics and Microengineering, Vol. 14, pp. 798-805, 2004.
    [19] J. T. Yang, W. F. Fang and K. Y. Tung, “Fluids Mixing in Devices with Connected-Groove Channels,” Chemical Engineering Science, Vol. 63, pp. 1871-1881, 2008.
    [20] 王儷霖, “交叉重疊式凹槽微混合器之設計與流場分析,” 國立清華大學動力機械工程研究所博士論文, 新竹市, 2006.
    [21] S. Hossain, A. Husain and K. Y. Kim, “Shape Optimization of a Micromixer with Staggered-Herringbone Grooves Patterned on Opposite Walls,” Chemical Engineering Science, Vol. 162, pp. 730-737, 2010.
    [22] 林雨欣, “具溝槽之波紋微混合器,” 國立成功大學機械工程研究所碩士論文, 台南市, 2011.
    [23] A. Alam and K. Y. Kim, “Analysis of Mixing in a Curved Microchannel with Rectangular Grooves,” Chemical Engineering Science, Vol. 181-182, pp. 708-716, 2012.
    [24] S. A. Rani, B. Pitts, P. S. Stewart, “Rapid Diffusion of Fluorescent Tracers into Staphylococcus Epidermidis Biofilms Visualized by Time Lapse Microscopy,” Antimicrobial Agents Chemotherapy, Vol. 49, pp. 728-732, 2005.
    [25] J. Boss, “Evaluation of the Homogeneity Degree of a Mixture,” Bulk Solids Handling, Vol. 6, pp. 1207-1215, 1986.

    無法下載圖示 校內:2018-08-12公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE