| 研究生: |
陳翔 Chen, Xiang |
|---|---|
| 論文名稱: |
以交通流動態平衡作為土地利用調整策略之研究—以無樁式共用單車為例 Research on the Dynamic Balance of Traffic Flow as a Land Use Adjustment Strategy - the Example of Dockless Bicycle Sharing |
| 指導教授: |
李子璋
Lee, Tzu-Chang |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
規劃與設計學院 - 都市計劃學系 Department of Urban Planning |
| 論文出版年: | 2024 |
| 畢業學年度: | 113 |
| 語文別: | 中文 |
| 論文頁數: | 173 |
| 中文關鍵詞: | 交通流動態平衡 、共享單車 、土地利用 、多目標模型 |
| 外文關鍵詞: | Dynamic balance of traffic flow, Shared bicycles, Land use, Multi-objective model |
| 相關次數: | 點閱:63 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
交通流問題是影響城市宜居性的重大挑戰。城市功能結構和土地利用結構的不合理規劃,會造成特定時段內的交通錯峰和供需不平衡的現象。針對交通擁堵的議題,已有相關理論研究緩解交通流的影響,且各時期各學派有不同的論述產生。其中代表理論有公共交通導向型開發TOD(Transit-oriented development)理論、緊湊城市理論等,這些理論研究對於緩解城市交通流影響具有重要的貢獻。但在現實城市建設實踐中,城市潮汐交通流的現象依然存在,亟需尋求破解之道。本研究從交通流動態平衡的角度來調整土地利用,作為緩解潮汐交通的有力工具。其有利於完善TOD開發與緊湊城市理論。
為了解決交通流動態平衡問題,本研究以無樁式共享單車為對象,借助地塊內的各POI(Point of Interest)業態數量建立業態與土地利用的關係;並通過基於社會網路分析法,建立共享單車借還網路關係;緊接著,結合社會網路結構,提出基於線性迴歸方程演算法的共享單車借還需求量影響因素的權重,為多目標數學規劃提供參數依據;最後,根據前兩步,建立調整土地利用的多目標規劃的共享單車動態調度平衡數學規劃模型,來實現地块開發與社会经济效率最适化。本研究通過制定調整土地利用策略,來優化土地使用,進而構建更有效率的都市。
本研究的主要結論如下:(1)通過對西安市鐘樓片區共享單車的借還網路關係進行社會網路分析,研究發現該區域內商業區和交通樞紐地塊的共享單車流動性最強,借還點最為密集。(2)通過多元線性迴歸方程分析,對共享單車的借還需求進行精準預測,在借出需求方面,住宅類(R類,Residential)POI的權重最高,為每小時每地塊增加0.531次,借車數量預計每小時每地塊增加0.531次。在還車需求方面,公共管理與公共服務類(AU類,Auto Utility)POI的權重最高,為0.551,商業服務業設施(B,Business)POI的權重為0.417。通過這些權重的分析,研究能夠有效地預測不同區域的共享單車借還需求,從而優化調度策略。(3)本研究通過多目標數學規劃模型,優化了共享單車的動態平衡。整個研究地塊共享單車借還交通流實現了數據最大化,證明整體地塊開發與社会经济效率最适化。從各地塊內的共享單車借還量平衡情況來看,各控規單元都實現了借還交通流比現狀更為平衡的情況。
本研究旨在為共享單車的合理調度和土地利用調整提供新的視角和工具。儘管研究存在一些局限性,但這些方法和框架具有一定的應用前景。期望能夠為實現城市交通的動態平衡和土地利用的永續發展提供有價值的理論基礎和實踐指導。
Unreasonable planning of urban functional structure and land use structure will cause traffic peak shifts and imbalance of supply and demand within specific periods of time. In order to solve the problem of dynamic balance of traffic flow, this study takes dockless shared bicycles as the object, and uses the social network analysis method and linear regression equation algorithm to calculate the weight of factors affecting the demand for borrowing and returning shared bicycles. Based on the first two steps, a shared bicycle dynamic dispatch balance mathematical planning model for multi-objective planning that adjusts land use is established to optimize land development and socio-economic efficiency. This study aims to provide new perspectives and tools for the rational dispatching and land use adjustment of shared bicycles.
1.Abdullahi, S., Pradhan, B., Mansor, S., & Shariff, A. R. M. (2015). GIS-based modeling for the spatial measurement and evaluation of mixed land use development for a compact city. Mapping Sciences & Remote Sensing, 52(1), 18-39. DOI:10.1080/15481603.2014.993854
2.Angelopoulos, A., Gavalas, D., Konstantopoulos, C., Kypriadis, D., & Pantziou, G. (2018). Incentivized vehicle relocation in vehicle sharing systems. Transportation Research Part C: Emerging Technologies, 97, 175-193. DOI:10.1016/j.trc.2018.10.016
3.Ashqar, H. I., Elhenawy, M., Rakha, H., Almannaa, M. H., & House, L. L. (2021). Network and station-level bike-sharing system prediction: a San Francisco bay area case study. Journal of Intelligent Transportation Systems Technology Planning and Operations, 26(5), 602-612. DOI:10.1080/15472450.2021.1948412
4.Bilal, M. T., & Giglio, D. (2023). Analysing inequity in land use and transportation models by genetic algorithm for realistically quantified penetration rate of advanced driving system equipped vehicles. Transportation research interdisciplinary perspectives, 20, 100841. DOI:10.1016/j.trip.2023.100841
5.Bohte, W., & Maat, K. (2009). Deriving and validating trip purposes and travel modes for multi-day GPS-based travel surveys: a large-scale application in the Netherlands. Transportation Research Part C, 17(3), 285-297. DOI:10.1016/j.trc.2008.11.004
6.Caggiani, L., & Ottomanelli, M. (2012). A modular soft computing based method for vehicles repositioning in bike-sharing systems. Procedia-Social and Behavioral Sciences, 54(2290), 675-684. DOI:10.1016/j.sbspro.2012.09.785
7. Caggiani, L., Ottomanelli, M., Camporeale, R., & Binetti, M. (2016). Spatio-temporal clustering and forecasting method for free-floating bike sharing systems. Springer International Publishing, 244–254. DOI:10.1007/978-3-319-48944-5_23
8.Caggiani, L., Camporeale, R., Ottomanelli, M., & Szeto, W. Y. (2018). A modeling framework for the dynamic management of free-floating bike-sharing systems. Transportation Research Part C Emerging Technologies, 87, 159-182. DOI:10.1016/j.trc.2018.01.001
9.Calthorpe, P. (1993). The next American metropolis: ecology, community & the American dream. New York: Princeton Architectural Press.
10.Campbell, A. A., Cherry, C. R., Ryerson, M. S., & Yang, X. (2016). Factors influencing the choice of shared bicycles and shared electric bikes in Beijing. Transportation Research Part C: Emerging Technologies, 67, 399-414. DOI:10.1016/j.trc.2016.03.004
11.Caulfield, B., O'Mahony, M., Brazil, W., & Weldon, P. (2017). Examining usage patterns of a bike-sharing scheme in a medium-sized city. Transportation Research Part A: Policy and Practice, 100, 152-161. DOI:10.1016/J.TRA.2017.04.023
12.Cervero, R., & Kockelman, K. (1997). Travel demand and the 3Ds: Density, diversity, and design. Transportation research part D: Transport and environment, 2(3), 199-219. DOI:10.1016/S1361-9209(97)00009-6
13.Chen, L. (2014). Redefining the typology of land use in the age of big data (Doctoral dissertation, Massachusetts Institute of Technology).
14.Contardo, C., Morency, C., & Rousseau, L. M. (2012). Balancing a dynamic public bike-sharing system (Vol. 4). Montreal, Canada: Cirrelt.
15.Cucuzzella, C., Owen, J., Goubran, S., & Walker, T. (2022). A TOD index integrating development potential, economic vibrancy, and socio-economic factors for encouraging polycentric cities. Cities, 131, 103980. DOI:10.1016/j.cities.2022.103980
16.De Chardon, C. M., & Caruso, G. (2015). Estimating bike-share trips using station level data. Transportation Research Part B, 78(Aug.), 260-279. DOI:10.1016/j.trb.2015.05.003
17.Du, Y., Deng, F., & Liao, F. (2019). A model framework for discovering the spatio-temporal usage patterns of public free-floating bike-sharing system. Transportation Research, 103(Jun.), 39-55. DOI:10.1016/j.trc.2019.04.006
18.Dzięcielski, M., Nikitas, A., Radzimski, A., & Caulfield, B. (2024). Understanding the determinants of bike-sharing demand in the context of a medium-sized car-oriented city: The case study of Milton Keynes, UK. Sustainable Cities and Society, 114, 105781. DOI:10.1016/j.scs.2024.105781
19.El-Assi, W., Mahmoud, M. S., & Habib, K. N. (2017). Effects of built environment and weather on bike sharing demand: a station level analysis of commercial bike sharing in Toronto. Transportation, 44(3), 589-613. DOI:10.1007/s11116-015-9669-z
20.Ewing, R., & Cervero, R. (2001). Travel and the built environment: a synthesis. Transportation research record, 1780(1), 87-114. DOI:10.3141/1780-10
21.Fishman, E., Washington, S., & Haworth, N. (2013). Bike share: a synthesis of the literature. Transport reviews, 33(2), 148-165. DOI:10.1080/01441647.2013.775612
22.Gehrke, S. R., & Clifton, K. J. (2015). Toward a spatial-temporal measure of land-use mix. Journal of Transport & Land Use, 9(1), 171-186. DOI:10.5198/jtlu.2015.725
23.Grant, J. (2002). Mixed use in theory and practice: Canadian experience with implementing a planning principle. Journal of the American Planning Association, 68(1), 71-84. DOI:10.1080/01944360208977192
24.Gu, T., Kim, I., & Currie, G. (2019). Measuring immediate impacts of a new mass transit system on an existing bike-share system in China. Transportation Research Part A: Policy and Practice, 124, 20-39. DOI:10.1016/j.tra.2019.03.003
25.Hampshire, R. C., & Marla, L. (2012, January). An analysis of bike sharing usage: explaining trip generation and attraction from observed demand. Transportation Research Board Annual Meeting, Washington, DC.
26.Harris, C. D., & Ullman, E. L. (1945). The nature of cities. The annals of the American academy of political and social science, 242(1), 7-17. DOI: 10.1177/000271624524200103
27.Herndon, J.D., (2011). Mixed-use development in theory and practice: Learning from Atlanta's mixed experiences (Master’s thesis, Georgia Institute of Technology, USA).
28.Hoppenbrouwer, E. and Louw E. (2004). Mixed-use development: theory and practice in Amsterdam's eastern docklands. European Planning Studies, 13(7), 967-983. DOI: 10.1080/09654310500242048
29.Huang, S. W., & Tsai, W. J. (2013). The analysis of measurements and influence factors of mixed land use. International Journal of Bioscience, Biochemistry and Bioinformatics, 3(3), 206. Retrieved from http://www.ijbbb.org/papers/197-S021.pdf
30.Jacobs, J. (1961). The Death and Life of Great American Cities. New York: Vintage Books.
31.Kadri, A. A., Kacem, I., & Labadi, K. (2016). A branch-and-bound algorithm for solving the static rebalancing problem in bicycle-sharing systems. Computers & Industrial Engineering, 95(May), 41-52. DOI:10.1016/j.cie.2016.02.002
32.Kajtazi, B. (2007). Measuring Multifunctionality of Urban Area (Master’s thesis, International Institute for Geo Information Science, Enschede, The Netherlands).
33.Kim, K. (2018). Investigation on the effects of weather and calendar events on bike-sharing according to the trip patterns of bike rentals of stations. Journal of transport geography, 66, 309-320. DOI:10.1016/j.jtrangeo.2018.01.001
34.Kingsley, K., Fátima Pereira da Silva, & Strassburger, R. (2023). In-vehicle technology to prevent drunk driving: public acceptance required for successful deployment. Transportation Research Procedia, 72, 2433-2440. DOI:10.1016/j.trpro.2023.11.741
35.Lamour, Q., Morelli, A. M., & Marins, K. R. D. C. (2019). Improving walkability in a TOD context: Spatial strategies that enhance walking in the Belém neighbourhood, in São Paulo, Brazil. Case studies on transport policy, 7(2), 280-292. DOI:10.1016/j.cstp.2019.03.005
36.Li, A., Zhao, P., Huang, Y., Gao, K., & Axhausen, K. W. (2020). An empirical analysis of dockless bike-sharing utilization and its explanatory factors: case study from Shanghai, China. Journal of Transport Geography, 88, 102828. DOI:10.1016/j.jtrangeo.2020.102828
37.Li, Y., Zhu, Z., & Guo, X. (2019). Operating characteristics of dockless bike-sharing systems near metro stations: Case study in Nanjing City, China. Sustainability, 11(8), 2256. DOI:10.3390/su11082256
38.Lin, L., He, Z., & Peeta, S. (2018). Predicting station-level hourly demand in a large-scale bike-sharing network: A graph convolutional neural network approach. Transportation Research Part C: Emerging Technologies, 97, 258-276. DOI:10.48550/arXiv.1712.04997
39.Liu, L., & Chen, R. C. (2017). A novel passenger flow prediction model using deep learning methods. Transportation Research Part C: Emerging Technologies, 84, 74-91. DOI:10.1016/j.trc.2017.08.001
40.Liu, Z., Jia, X., & Cheng, W. (2012). Solving the last mile problem: Ensure the success of public bicycle system in Beijing. Procedia-social and behavioral sciences, 43, 73-78. DOI:10.1016/j.sbspro.2012.04.079
41.Lundberg, G. A. (1937). [Review of Who Shall Survive? A New Approach to the Problem of Human Interrelations., by J. L. Moreno]. American Sociological Review, 2(4), 542–544. DOI:10.2307/2084777
42.Lynch, K.(1984). Good city form. Cambridge, Mass.: MIT Press.
43.Mashhoodi, B., & Berghauser Pont, M. (2011, August). Studying land-use distribution and mixed-use patterns in relation to density, accessibility and urban form. In 18th International Seminar on Urban Form (pp. 1-19).
44.Mehra, A. (2005). The development of social network analysis: a study in the sociology of science. Administrative Science Quarterly, 50(1), 148-151. DOI:10.2189/asqu.2005.50.1.148
45.Nadrian, H., Heizomi, H., Shirzadi, S., Moradi, M. S., & Hajibadali, P. (2022). Exploring the dimensions of urban quality of life associated with urban traffic jam: The development and validation of an instrument. Journal of Transport & Health, 26, 101463. DOI: 10.1016/j.jth.2022.101463
46.Narvaez, L., & Penn, A. (2016). The architecture of mixed uses. Journal of Space Syntax, 7(1), 107-136. Retrieved from https://www.researchgate.net/publication/315754277
47.O’brien, O., Cheshire, J., & Batty, M. (2014). Mining bicycle sharing data for generating insights into sustainable transport systems. Journal of Transport Geography, 34, 262-273. DOI:10.1016/j.jtrangeo.2013.06.007
48.O'sullivan, A. (1996). Urban economics (Vol. 3). Chicago: Irwin.
49.Pal, A., & Zhang, Y. (2017). Free-floating bike sharing: Solving real-life large-scale static rebalancing problems. Transportation Research Part C: Emerging Technologies, 80, 92-116. DOI:10.13140/RG.2.1.1727.1766
50.Pucher, J., Dill, J., & Handy, S. (2010). Infrastructure, programs, and policies to increase bicycling: An international review. Preventive medicine, 50, S106-S125. DOI: 10.1016/j.ypmed.2009.07.028
51.Pucher, J., Buehler, R., & Seinen, M. (2011). Bicycling renaissance in North America? An update and re-appraisal of cycling trends and policies. Transportation research part A: policy and practice, 45(6), 451-475. DOI: 10.1016/j.tra.2011.03.001
52.Qiang, W. W., Wen, T., Luo, H., Huang, B., & Lee, H. F. (2024). Does a more compact urban center layout matter in reducing household carbon emissions? Evidence from Chinese cities. Land Use Policy, 146, 107320. DOI: 10.1016/j.landusepol.2024.107320
53.Raviv, T., Tzur, M., & Forma, I. A. (2013). Static repositioning in a bike-sharing system: models and solution approaches. EURO Journal on Transportation and Logistics, 2(3), 187-229. DOI:10.1007/s13676-012-0017-6
54.Regue, R., & Recker, W. (2014). Proactive vehicle routing with inferred demand to solve the bikesharing rebalancing problem. Transportation Research Part E: Logistics and Transportation Review, 72, 192-209. DOI:10.1016/j.tre.2014.10.005.
55.Ricci, M. (2015). Bike sharing: A review of evidence on impacts and processes of implementation and operation. Research in Transportation Business & Management, 15, 28-38. DOI:10.1016/j.rtbm.2015.03.003
56.Rowley, A. (1996). Mixed-use development: Ambiguous concept, simplistic analysis and wishful thinking?. Planning Practice & Research, 11(1), 85-98. DOI:10.1080/02697459650036477
57.Saelens, B. E., Sallis, J. F., & Frank, L. D. (2003). Environmental correlates of walking and cycling: findings from the transportation, urban design, and planning literatures. Annals of behavioral medicine, 25(2), 80-91. DOI:10.1207/S15324796ABM2502_03
58.Schuijbroek, J., Hampshire, R. C., & Van Hoeve, W. J. (2017). Inventory rebalancing and vehicle routing in bike sharing systems. European Journal of Operational Research, 257(3), 992-1004. DOI:10.1016/j.ejor.2016.08.029
59.Shelat, S., Huisman, R., & van Oort, N. (2018). Analysing the trip and user characteristics of the combined bicycle and transit mode. Research in transportation economics, 69, 68-76. DOI:10.1016/j.retrec.2018.07.017
60.Shen, Y., Zhang, X., & Zhao, J. (2018). Understanding the usage of dockless bike sharing in Singapore. International Journal of Sustainable Transportation, 12(9), 686-700. DOI:10.1080/15568318.2018.1429696
61.Shi, B., & Yang, J. (2015). Scale, distribution, and pattern of mixed land use in central districts: A case study of Nanjing, China. Habitat International, 46, 166-177. DOI:10.1016/j.habitatint.2014.11.008
62.Shui, C. S., & Szeto, W. Y. (2018). Dynamic green bike repositioning problem–A hybrid rolling horizon artificial bee colony algorithm approach. Transportation Research Part D: Transport and Environment, 60, 119-136. DOI: 10.1016/j.trd.2017.06.023
63.Thwaites, K., Porta, S., Romice, O., Greaves, M., & Simkins, I.(2008). Urban sustainability through environmental design. Urban Policy & Research, 28(2), 233-235.DOI:10.1080/08111141003693117
64.Unwin, R. (1913). Town planning in practice: An introduction to the art of designing cities and suburbs. New York: Princeton Architectural Press.
65.URDPFI (2014). Urban and regional development plans formulation and implementation (URDPFI) guideline. India: Ministry of Urban Development, Government of India.
66.Van den Hoek, J. (2008, September). The MXI (Mixed-use Index) an instrument for anti-sprawl policy. In 44th ISOCARP Congress. Dalian, China.
67.Vega, A., & Reynolds-Feighan, A. (2009). A methodological framework for the study of residential location and travel-to-work mode choice under central and suburban employment destination patterns. Transportation Research Part A: Policy and Practice, 43(4), 401-419. DOI:10.1016/j.tra.2008.11.011
68.Vogel, P., Greiser, T., & Mattfeld, D. C. (2011). Understanding bike-sharing systems using data mining: Exploring activity patterns. Procedia-Social and Behavioral Sciences, 20, 514-523. DOI: 10.1016/j.sbspro.2011.08.058
69.Wang, X., Lindsey, G., Schoner, J. E., & Harrison, A. (2016). Modeling bike share station activity: Effects of nearby businesses and jobs on trips to and from stations. Journal of Urban Planning and Development, 142(1), 04015001. DOI: 10.1061/(ASCE)UP.1943-5444.0000273
70.Warrington, J., & Ruchti, D. (2019). Two-stage stochastic approximation for dynamic rebalancing of shared mobility systems. Transportation Research Part C: Emerging Technologies, 104, 110-134. DOI: 10.1016/j.trc.2019.04.021
71.Xing, Y., Wang, K., & Lu, J. J. (2020). Exploring travel patterns and trip purposes of dockless bike-sharing by analyzing massive bike-sharing data in Shanghai, China. Journal of transport geography, 87, 102787. DOI: 10.1016/j.jtrangeo.2020.102787
72.Li X., Zhang X., Cheng, C., & Yang C. (2020). Dynamic Repositioning Model for Free-floating Bikesharing System Considering Shifting Demand. Journal of Transportation Systems Engineering and Information Technology, 20(3), 182. DOI:10.16097/j.cnki.1009-6744.2020.03.028
73.Xiong, H., Xu, Y., Yan, H., Guo, H., & Zhang, C. (2024). Optimizing electric vehicle routing under traffic congestion: A comprehensive energy consumption model considering drivetrain losses. Computers & Operations Research, 168, 106710. DOI: 10.1016/j.cor.2024.106710
74.Zhang, D., Yu, C., Desai, J., Lau, H. Y. K., & Srivathsan, S. (2017). A time-space network flow approach to dynamic repositioning in bicycle sharing systems. Transportation research part B: methodological, 103, 188-207. DOI: 10.1016/j.trb.2016.12.006
75.Zhang, J., Chen, F., Guo, Y., & Li, X. (2020). Multi‐graph convolutional network for short‐term passenger flow forecasting in urban rail transit. IET Intelligent Transport Systems, 14(10), 1210-1217. DOI: 10.1049/iet-its.2019.0873
76.Zhou, M., Wang, D., Huang, S., Zhou, J., & Guo, L. (2024). Evaluating the impact of rail transit network expansion on travel behavior in Shenzhen, China: A causal analysis across different stages of development. Transportation Research Part D: Transport and Environment, 132, 104246. DOI:10.1016/j.trd.2024.104246
77.Zhu, K., Xun, P., Li, W., Li, Z., & Zhou, R. (2019). Prediction of passenger flow in urban rail transit based on big data analysis and deep learning. IEEE Access, 7, 142272-142279. DOI: 10.1109/ACCESS.2019.2944744
78.Zong, X., Qi, Y., Yan, H., & Ye, Q. (2024). An intelligent deep learning framework for traffic flow imputation and short-term prediction based on dynamic features. Knowledge-Based Systems, 300, 112178. DOI: 10.1016/j.knosys.2024.112178
79.艾媒諮詢(2024年7月7日)。2023年中國共用單車消費者行為調研資料。取自https://www.iimedia.cn/c1061/101141.html
80.北斗導航系統工程中心,2020,北斗衛星圖。
81.陳傳紅、李雪燕(2018)。市民共用單車使用意願的影響因素研究。管理學報。11,1601-1610。
82.陳翔(2014)。軌道交通對控規階段土地使用強度影響研究——以深圳市地鐵四號線梅林站為例(碩士論文)。長安大學,陝西西安。
83.段德罡、張凡(2013)。土地利用優化視角下的城市軌道網站分類研究——以西安地鐵2號線為例。城市規劃。9,39-45。
84.馮麟博(2020)。基於需求預測的共用單車動態調度問題研究(碩士論文)。大連交通大學,遼寧大連。
85.高楹、宋辭、舒華、裴韜(2018)。北京市摩拜共用單車源匯時空特徵分析及空間調度。地球資訊科學學報。20(08),1123-1138。
86.侯雪(2012)。基於TOD理念的軌道交通站點週邊土地利用評價及優化模型(碩士論文)。北京交通大學,北京。
87.黃麗彬(2006)。大城市軌道交通站點對地區發展的影響評價研究(碩士論文)。同濟大學,上海。
88.蔣原銳、賈順平、李軍(2019)。基於調度池的共用單車調度研究。交通資訊與安全。5,124-132。
89.孔靜(2018)。無樁式共用單車網站需求預測及調度路徑優化研究(碩士論文)。長安大學,陝西西安。
90.李川(2012)。新形勢下控制性詳細規劃編制的思路——《福建省城市控制性詳細規劃編制導則》制定。福建建築。2,1-3。
91.李三超(2018)。城市無樁共用單車調度方案研究(碩士論文)。長安大學,陝西西安。
92.劉炳恩(2008)。城市軌道交通廓道效應分析模型與方法研究(博士論文)。吉林大學,吉林長春。
93.劉珈琪、柯灣、劉春(2019)。基於TAM-ECM模型的共用單車使用者持續使用意願影響因素研究。軟科學。7(33),116-21。
94.劉路美(2017)。城市公共自行車站點需求預測及調度優化方法研究(碩士論文)。北京交通大學,北京。
95.劉祝銘(2017)。基於使用者的無樁式公共自行車調度方法研究。智能城市。7(14),14-15。
96.喬少傑、韓楠、岳昆、易玉根、黃髮良、元昌安、...Louis Alberto GUTIERREZ(2022)。基於資料場聚類的共用單車需求預測模型。軟體學報。33(4),1451-1476。
97.唐爐亮、陳西、楊雪、張霞、李清泉(2018)。基於城市用地的公共自行車騎乘量建模。交通運輸工程學報。18(1),150-158。
98.陶永虎、陳輝浩、楊壯(2020)。基於時空分析的共用單車調度模型。中國戰略新興產業。36,23。
99.王凱、張菁、徐澤、徐穎(2012)。立足統籌,面向轉型的用地規劃技術規章——《城市用地分類與規劃建設用地標準(GB50137-2011)》闡釋。城市規劃。4,42-48。
100.吳兵(2017)。城市用地再開發與交通擁擠治理策略。上海市:同濟大學出版社。
101.西安市自然資源局(2020)。西安市城市總體規劃。陝西西安。 取自https://zygh.xa.gov.cn/web_files/zygh/file/2022/05/20/202205201732062741494.pdf
102.徐標、路慶昌(2023)。共用單車停車需求的多尺度時空影響因素。浙江大學學報(工學版)。57(2),380-391。
103.閻小培、歐陽南江、許學強(1994)。邁向二十一世紀的中國城市發展與城市地理學。經濟地理。14(4),1-6。
104. 于德新、張行、王薇、邢雪、劉珩(2019)。共用單車調度模型及演算法研究。重慶交通大學學報:自然科學版。39(7),1-7。
105.張芳、陳彬、湯楊華、董健、艾川、邱曉剛(2019)。基於興趣點聚類的無樁共用單車時空模式分析。系統模擬學報。31(12),2829-2836。
106.張飛(2020)。城市軌道交通站點接駁方式選擇與外部可及性提升策略研究(碩士論文)。長安大學,陝西西安。
107.張建翔(2017)。基於共用單車時空分佈的優化調度模型。經貿實踐。16,226-226。
108.張小松、胡志暉、鄭榮洲(2003)。城市軌道交通對土地利用的影響分析。城市軌道交通研究。6(6),24-26。
109.趙金寶(2015)。城市軌道交通站點輻射區基礎理論及其應用研究(博士論文)。東南大學,江蘇南京。
110.趙曼(2017)。共用單車網路分析及其優化調度研究(碩士論文)。山東科技大學,山東青島。
111.趙遴、張少鋒、王敬傑、孟煥生(2024)。基於多元線性回歸的哈爾濱重污染天氣預報。黑龍江氣象,3,27-30。
112.週傳鈺(2018)。共用單車投放量測算和調度方法研究(碩士論文)。北京交通大學,北京。
113.住房和城鄉建設部(2012)。城市用地分類與規劃建設用地標準。北京:中國建築工業出版社。
114.朱萍、朱亞成、董雨薇、謝紅林、李荔、錢琪(2017)。2017-2018 中國共用單車發展報告。中國商論。31,143-147。
校內:2029-11-28公開