簡易檢索 / 詳目顯示

研究生: 岑超群
Sivananda, Cristoper Aditya
論文名稱: 以電紡絲法製備聚4-甲基異戊烯纖維
Preparation of poly(4-methyl-1-pentene) fibers via electrospinning
指導教授: 王紀
Wang, Chi
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 85
中文關鍵詞: PMP電紡絲纖維
外文關鍵詞: PMP, electrospinning, fibers
相關次數: 點閱:105下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 以電紡絲製備poly(4-methyl-1-pentene)(PMP)纖維,並以cyclohexane/methyl ethyl ketone為共溶劑,由於在電紡PMP溶液過程中會產生阻塞現象,故以同軸雙管進行電紡絲,內管溶液為PMP溶液,外管溶液為後cyclohexane溶劑,電紡PMP溶液為一連續製程。PMP溶液的entanglement濃度為6.0 wt%,高於此濃度可得均勻的PMP纖維。此外,亦探討溶液黏度對於Taylor cone高、液柱長度、液柱直徑(dj)及纖維直徑(df)的影響,並以液柱直徑與纖維直徑對溶液黏度(o)做全對數圖可得scaling law關係:dj~o0.06與df~o0.4。

    Electrospun poly(4-methyl-1-pentene) (PMP) fibers are prepared from cyclohexane/methyl ethyl ketone-based co-solvent. Nevertheless, rapid clogging of PMP solutions during electrospinning is observed. In order to prevent this clogging phenomenon the co-axial electrospinning system is used. Cyclohexane is introduced as shell fluid and the PMP solution is placed as core fluid. The result is that electrospinning of PMP solutions can be carried out continuously. The entanglement concentration for PMP solutions is 6wt% and using this concentration for electrospinning uniform PMP fibers can be obtained. Moreover, the solution viscosity effects on the cone height, jet length, jet diameter (dj), and fiber diameter (df) are observed, too. The double-logarithmic plots of the dj and df versus zero shear viscosity (ηo) reveal two scaling laws existed for the present solutions, i.e., dj~ηo0.06 and df~ηo0.4.

    摘要 i Abstract ii Acknowledgment iii Contents iv List of Tables vi List of Figures vii Annotations xi 1. Preface 1 2. Introduction 2 3. Literature Review 7 3.1 Poly(4-methyl-1-pentene) 7 3.2 Electrospinning of PMP solutions 10 3.3 Prevention of clogging during electrospinning 11 4. Theory 28 4.1 Estimating the crystallite size using XRD 28 4.2 The relations between the melting point and the size of crystals 28 5. Experimental Section 30 5.1 Material 30 5.2 Experimental instrument 30 5.3 Analytical instrument 31 5.4 Experimental procedure 32 5.4.1 Preparation of PMP solutions 32 5.4.2 Room temperature electrospinning 33 5.4.3 High temperature electrospinning 34 5.5 Analytical procedure 35 5.5.1 Brookfield viscometer 35 5.5.2 Conductivity measurement 35 5.5.3 Scanning electron microscopy (SEM) 36 5.5.4 Differential scanning calorimeter (DSC) 36 5.5.5 Wide-angle X-ray diffraction (WAXD) 37 5.5.6 Jet diameter measurement using laser 38 5.6 Flowchart of electrospinning experiment 39 6. Results and Discussion 44 6.1 Preparation PMP solution for electrospinning 44 6.2 The properties of PMP solution 45 6.3 Entanglement concentration of PMP solution 47 6.4 Room temperature electrospinning 48 6.5 High temperature electrospinning 49 6.6 WAXD profiles of PMP fibers 51 6.7 Thermal properties of PMP fibers 51 7. Conclusion 80 8. References 81 9. Appendix 84

    [1] J. Doshi, D.H. Reneker, “Electrospinning process and applications of electrospun fibers”, Journal of Electrostatics 35, 151 (1995).
    [2] D.H. Reneker, A.L. Yarin, H. Fong, S. Koombhongse, “Bending instability of electrically charged liquid jets of polymer solutions in electrospinning”, Journal of Applied Physics 87, 4531 (2000).
    [3] J.H. Griffith, B.G. Ranby, “Dilatometric measurements on poly(4-methyl-1-pentene) glass and melt transition temperatures, crystallization rates, and unusual density behavior”, Journal of Polymer Science 44, 369 (1960).
    [4] K.H. Lee, S. Givens, D.B. Chase, J.F. Rabolt, “Electrostatic polymer processing of isotactic poly(4-methyl-1-pentene) fibrous membrane”, Polymer 47, 8013 (2006).
    [5] H.N. Beck, “Solubility characteristic of poly(4-methyl-1-pentene)”, Journal of Applied Polymer Science 50, 897 (1993).
    [6] C.D. Rosa, A. Borriello, V. Venditto, P. Corradini, “Crystal structure of type III and the polymorphism of isotactic poly(4-methylpentene-1)”, Macromolecules 27, 3864 (1994).
    [7] K.H. Lee, S.R. Givens, C.M. Snively, B. Chase, J.F. Rabolt, “Crystallization behavior of electrospun PB/PMP blend fibrous membranes”, Macromolecules 41, 3144 (2008).
    [8] J. Fang, E. Kiran, “Crystallization and gelation of isotactic poly(4-methyl-1-pentene) in n-pentane and in n-pentane + CO2 at high pressures”, Journal of Supercritical Fluids 38, 132 (2006).
    [9] T. Tanigami, H. Suzuki, K. Yamaura, S. Matsuzawa, ”Gelation and crystallization of poly(4-methyl-1-pentene) in cyclohexane solutions”, Macromolecules 18, 2595 (1985).
    [10] K. Kanjanapongkul, S. Wongsasulak, T. Yoovidhya, “Investigation and preventation of clogging during electrospinning of zein solutions”, Journal of Applied Polymer Science 118, 1821 (2010).
    [11] J. Yan, D.G. Yu, “Smoothening electrospinning and obtaining high-quality cellulose acetate nanofibers using a modified coaxial process”, Journal of Materials Science 47, 7138 (2012).
    [12] D.G. Yu, J.H. Yu, L. Chen, G.R. Williams, X. Wang, “Modified coaxial electrospinning for the preparation of high-quality ketoprofen-loaded cellulose acetate nanofibers”, Carbohydrate Polymers 90, 1016 (2012).
    [13] G. Charlet, G. Delmas, “Effect of solvent on the polymorphism of poly(4-methylpentene-1): 2. Crystallization in semi-dilute solutions”, Polymer 25, 1619 (1984).
    [14] C.D. Rosa, D. Capitani, S. Cosco, “Solid-state 13C nuclear magnetic resonance spectra of four crystalline forms of isotactic poly(4-methyl-1-pentene)”, Macromolecules 30, 8322 (1997).
    [15] K. Wegsteen, H. Berghmans, “Phase behavior and structure formation in solutions of poly(4-methyl-1-pentene) in cyclohexane”, Macromolecular Chemistry and Physics 199, 267 (1998).
    [16] J.I. Langford, A.J.C. Wilson, “Scherrer after sixty years: A survey and some new results in the determination of crystallite size”, Journal of Applied Crystallofraphy 11, 102 (1978).
    [17] Y. Xue, Q. Zhao, C. Luan, “The thermodynamic relations between the melting point and the size of crystals”, Journal of Colloid and Interface Science 243, 388 (2001).
    [18] R.G. Weiss, P. Terech, “Molecular gels – Materials with self-assembled fibrillar networks”, Springer, 248 (2006).
    [19] S.M. Tosh, A.G. Maragoni, “Determination of the maximum gelation temperature in gelatin gels”, Applied Physics Letters 84, 4242 (2004).
    [20] C. Wang, Y.W. Cheng, C.H. Hsu, H.S Chien, S.Y. Tsou, “How to manipulate the electrospinning jet with controlled properties to obtain uniform fibers with the smallest diameter? -a brief discussion of solution electrospinning process”, Journal of Polymer Research 18, 111 (2011).
    [21] C. Wang, M.F. Lee, Y.J. Wu, “Solutions-electrospun poly(ethylene terephlate) fibers: processing and characterization”, Macromolecules 45, 7939 (2012).
    [22] C. Wang, H.C. Chien, C.H. Hsu, Y.C.Wang, C.T. Wang, H.A. Lu, “Electrospinning of polyacrylonitrile solutions at elevated temperatures”, Macromolecules 40, 7973 (2007).
    [23] C. Wang, C.H. Hsu, J.H. Lin, “Scaling laws in electrospinning of polystyrene solutions”, Macromolecules 39, 7662 (2006).
    [24] A.C. Puelo, D.R Paul, P.K. Wong, “Gas sorption and transport in semicrystalline poly(4-methyl-1-pentene)”, Polymer 30, 1357 (1989).

    無法下載圖示 校內:2018-08-30公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE