簡易檢索 / 詳目顯示

研究生: 林瑞麒
Lin, Jui-Chi
論文名稱: 含量測時延批次間控制之穩定性分析與強健最佳設計
Stability Analysis and Robust Optimal Design of Run-to-Run Control Subject to Metrology Delays
指導教授: 黃世宏
Hwang, Shyh-Hong
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 76
中文關鍵詞: 批次間控制穩定強健性強健最佳化權衡性能指標確定性擾動隨機擾動
外文關鍵詞: Run-to-run control, stability robustness, optimization, performance indices, stochastic disturbances
相關次數: 點閱:115下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在半導體批次製程中,批次間控制常被用來調整每個批次的輸入配方,以降低擾動所造成的產品品質變化。然而許多批次間控制器並未在最佳條件下操作,可能原因包括不適當的控制器結構、較差的強健性、以及缺乏適當的性能標準來決定控制參數的配置。本論文針對量測時延和複雜擾動動態的存在及穩定強健性的要求,發展出符合最佳控制器結構之性能指標與簡易穩定性分析方法,以獲得批次間控制器之強健最佳設計。
    批次間控制常面對多種形式的確定性與隨機性擾動,兩者分別會使得製程輸出偏離目標值與發生持續性隨機變異。本論文以暫態性能指標來評估確定性擾動的影響,以長期性能指標來評估隨機性擾動的影響,最後結合兩指標來形成權衡性能指標,做為評估整體性能的標準。在內模控制架構下,批次間控制器的設計可簡化為濾波器的設計,根據擾動動態和強健性限制,選擇最佳的濾波器階次和參數配置。具體而言,二階濾波器最適合處理確定性偏移和ARMA(1,1)隨機性擾動,而三階濾波器最適合處理確定性漂移和IMA(1,1)隨機性擾動。為了完成強健最佳設計,可將權衡性能指標最小化,推導出濾波器參數配置的最佳解,並利用所提簡易方法來分析相應之穩定強健性。當此未受限最佳設計無法滿足穩定強健性要求時,本論文另外提出受限最佳濾波器的設計流程,並為此建立數個基於增益邊限之強健性圖形。藉由這些圖形,此設計流程可以快速且有效地獲得滿足穩定強健性限制的全域最佳濾波器參數。

    In semiconductor manufacturing, run-to-run (RtR) control is commonly used to reduce the variability in the product quality induced by disturbances. In this thesis, a tradeoff performance index and a simple stability analysis method are developed to yield the robust optimal design of an RtR controller with metrology delays. A transient performance index is employed to assess the effects of a deterministic disturbance, whereas a long-run performance index is employed to assess the effects of a stochastic disturbance. The two indices are combined to form a tradeoff performance index to serve as an overall performance criterion. In the internal model control framework, the design of an RtR controller can be implemented by the design of a filter with a suitable order. Specifically, a second-order filter is best suited to a deterministic shift and an ARMA(1,1) stochastic disturbance, while a third-order filter is best suited to a deterministic drift and an IMA(1,1) stochastic disturbance. To achieve the robust optimal design, the tradeoff performance index is minimized to derive the optimal solution of filter parameters and the associated stability robustness is analyzed. If the unconstrained optimal design does not satisfy the requirements on stability robustness, a design procedure is provided to find the constrained optimal filter. To this end, several robustness diagrams are established based on user-specified gain margins. With the aid of these diagrams, the design procedure can identify rapidly the globally optimal filter parameters that meet the constraints on stability robustness.

    摘要 I Abstract II 誌謝 VIII 目錄 IX 表目錄 XII 圖目錄 XIII 符號表 XV 第一章 緒論 1 1.1 前言 1 1.2 研究動機與目的 2 1.3 章節與組織 3 第二章 批次間控制理論回顧 4 2.1 含輸出擾動之批次間程序 4 2.2 確定與隨機性擾動形式 4 2.3 傳統批次間控制器設計 5 2.3.1 無量測時延之EWMA控制器 6 2.3.2 無量測時延之Double EWMA控制法 6 2.4 內模批次間控制架構 7 2.5 內模批次間控制器設計 9 2.5.1 批次間控制之高階濾波器設計 9 2.5.2 批次間控制之二階濾波器設計 11 2.6 開環轉移函數推導 11 2.7 穩定強健性指標 13 2.7.1 H無窮範數 13 2.7.2 奈氏圖應用與介紹 14 第三章 批次間控制之理論推導 16 3.1 濾波器設計 16 3.2 濾波器與擾動型態 18 3.3 批次間控制器之穩定性分析 18 3.4 批次間控制器之性能指標 20 3.4.1 漂移擾動之暫態性能指標 20 3.4.2 IMA(1,1)擾動形式之長期性能指標 23 3.4.3 偏移擾動之暫態性能指標 25 3.4.4 ARMA(1,1)擾動形式之長期性能指標 26 3.4.5 權衡性能指標 27 3.5 奈氏圖分類 28 3.5.1 處理偏移擾動之二階濾波器(d=1) 28 3.5.2 處理偏移擾動之二階濾波器(d=2) 30 3.5.3 處理漂移擾動之三階濾波器(d=1) 32 3.5.4 處理漂移擾動之三階濾波器(d=2) 33 第四章 針對偏移擾動之強健最佳批次設計 36 4.1 未限制穩定強健性 36 4.1.1 未限制穩定強健性之最佳設計推導 36 4.1.2 實際性能指標 38 4.2 穩定強健性限制之最佳設計 39 4.2.1 穩定強健性圖形(d=1) 39 4.2.2 穩定強健性圖形(d=2) 41 4.2.3 穩定強健最佳解析解 44 4.2.3.1 ARMA(1,1)擾動形式之最佳設計 44 4.2.3.2 IMA(1,1)擾動形式之最佳設計 46 4.2.3.3 偏移擾動之穩定強健最佳設計流程圖 48 4.3 偏移擾動模擬結果 49 4.3.1 模擬結果(d=1) 49 4.3.2 模擬結果(d=2) 51 第五章 針對漂移擾動之強建最佳批次設計 56 5.1 未限制穩定強健性 56 5.1.1 未限制穩定強健性之最佳設計推導 56 5.1.2 實際性能指標 58 5.2 穩定強健性限制之最佳設計 59 5.2.1 穩定強健性不足(d=1) 59 5.2.2 穩定強健性不足(d=2) 62 5.2.2.1 增益邊限下限不滿足 62 5.2.2.2 調整增益邊限下限後上限仍不滿足 65 5.2.2.3 增益邊限上限不滿足 70 5.2.2.4 漂移擾動之穩定強健最佳設計流程圖 71 5.3 不同濾波器處理漂移擾動之模擬結果 72 第六章 結論與未來展望 74 6.1 結論 74 6.2 未來展望 74 參考文獻 75

    Adivikolanu, S. and Zafiriou, E., “Internal model control approach to run-to-run control for semiconductor manufacturing.” Proc. Amer. Control Conf., Albuquerque, New Mexico, 145-149, 1997.
    Adivikolanu, S. and Zafiriou, E., “Extensions and performance/robustness tradeoffs of the EWMA run-to-run controller by using the internal model control structure.” IEEE Trans. Electron. Packag Manuf., 23, 56-68, 2000.
    Boning, D. S., Moyne, W. P., Smith, T. H., Moyne, J., Telfeyan, R., Hurwitz, A., Shellman, S., and Tayor, J., “Run by run control of chemical-mechanical polishing.” IEEE Trans. Comp. Packag. Manuf. Technol. C, 19, 307-314, 1996.
    Box, G. E. and Jenkins, G. M., Time Series Analysis—Forecasting and Control. Holden-Day: Oakland, CA, 1974.
    Box, G. E., Jenkins, P., and Reinsel, G. M., Time Series Analysis: Forecasting and Control, 3rd ed. Prentice Hall: Englewood Cliffs, NJ, USA, 1994.
    Butler, S. W. and Stefani, J. A., “Supervisory run-to-run control of polysilicon gate etch using in situ ellipsometry.” IEEE Trans. Semicond. Manuf., 7, 193-201, 1994.
    Chen, A. and Guo, R.-S., “Age-based double EWMA controller and its application to CMP processes.” IEEE Trans. Semicond. Manuf., 14, 11-19, 2001.
    Chen, L., Ma, M., Jang, S.-S., Wang, D. S.-H., and Wang, S. “Performance assessment of run-to-run control in semiconductor manufacturing based on IMC framework.” Int. J. Prod. Res., 47, 4173-4199, 2009.
    Del Castillo, E., “Long run and transient analysis of a double EWMA feedback controller.” IIE Trans., 31, 1157-1169, 1999.
    Good, R. P. and Qin, S. J. “On the stability of MIMO EWMA run-to-run controllers with metrology delay.” IEEE Trans. Semicond. Manuf., 19, 78-86, 2006.
    Hamby, E. S., Kabamba, P. T., and Khargonekar, P. P. “A probabilistic approach to run-to-run control.” IEEE Trans. Semicond. Manuf., 11, 654-669, 1998.
    Hunvitz, A., Moyne, J. R., Telfeyan, R., and Taylor, J., “A process-independent run-to-run controller and its application to chemical-mechanical planarization.” Proc. semi. ASMC., Boston, MA, 194-200, 1995.
    Ingolfsson, A. and Sachs, E. “Stability and sensitivity of an EWMA controller.” J. Qual. Technol., 25, 271-287, 1993.
    Lee, A.-C., Pan, Y.-R., and Hsieh, M.-T., “Output disturbance observer structure applied to run-to-run control for semiconductor manufacturing.” IEEE Trans. Semicond. Manuf., 24, 27-43, 2011.
    Morari, M. and Zafiriou, E. Robust Process Control. Prentice Hall: Englewood Cliffs, NJ, USA, 1989.
    Moyne, J. R., Chaudhry, N., and Telfeyan, R., “Adaptive extensions to a multibranch run‐to‐run controller for plasma etching.” J. Vac. Sci. Technol., 13, 1787-1791, 1995.
    Moyne, J., del Castillo, E., and Hurwitz, A. M. “Run-to-run control in semiconductor manufacturing”; CRC Press: Florida, USA, 2000.
    Ogata, K. Discrete-Time Control Systems. Prentice Hall: Englewood Cliffs, NJ, USA, 1987.
    Patel, N. S. and Jenkins, S. T. “Adaptive optimization of run-to-run controllers: the EWMA example.” IEEE Trans. Semicond. Eng., 13, 97-107, 2000
    Sachs, E., Hu, A., and Ingolfsson, A., “Run by run process control: combining SPC and feedback control.” IEEE Trans. Semicond. Manuf., 8, 26-43, 1995.
    Smith, T. H., Boning, D. S., Stefani, J., and Bulter, S. W. “Run by run advanced process control of metal sputter deposition.” IEEE Trans. Semicond. Manuf., 11, 276-284, 1998.
    Su, C.-T. and Hsu, C.-C. “A time-varying weights tuning method of the double EWMA controller.” Omega, 32, 473-480, 2004.
    Tseng, S.-T., Chou, R.-J. and Lee, S.-P. “A study on a multivariate EWMA controller,” IIE Trans., vol. 34, pp. 541–549, 2002.
    Wu, M.-F., Lin, C.-H., Wong, D. S.-H., Jang, S.-S., and Tseng, S.-T., “Performance analysis of EWMA controllers subject to metrology delay.” IEEE Trans. Semicond. Manuf., 21, 413-425, 2008.
    王信淳,”混合式批次間控制器設計:不確定時延及複合性能指標相關議題”,國立成功大學化學工程學系碩士論文,2014。

    下載圖示 校內:2018-02-10公開
    校外:2018-05-01公開
    QR CODE