| 研究生: |
江宗錡 CHIANG, TSUNG-CHI |
|---|---|
| 論文名稱: |
量子計算中的數學應用 Math Application in Quantum Computation |
| 指導教授: |
賴青瑞
Lai, Ching Jui |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 數學系應用數學碩博士班 Department of Mathematics |
| 論文出版年: | 2025 |
| 畢業學年度: | 112 |
| 語文別: | 英文 |
| 論文頁數: | 39 |
| 中文關鍵詞: | 量子計算 、基態模擬 、黎曼幾何 、量子變分電路 |
| 外文關鍵詞: | Quantum computation, Ground state simulation, Riemannian geometry , Variational quantum eigensolver |
| 相關次數: | 點閱:21 下載:5 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文探討了量子計算 (quantum computation) 中的兩個關鍵領域:高效量子電路的構建以及分子基態模擬 (molecular ground state simulation)。
第一部分處理「么正分解 (Unitary Decomposition)」問題,即如何用一組物理上可實現的基本量子閘來建構一個特定的么正操作。傳統電腦面臨「指數牆 (exponential wall)」的障礙,難以模擬複雜的量子系統。量子電腦或可克服此問題,但任意操作的實現並非易事。
本文詳述一種在特殊么正群流形 SU(2n) 上,透過尋找最短路徑 (geodesic) 來分解目標么正算符的方法。此方法利用廣義泡利矩陣 (generalized Pauli matrices) 定義了一個右不變度量,並推導了測地線方程式以確定最佳演化路徑,從而建立了一個數學框架。 其目標是使用一系列單量子位元 (qubit) 和雙量子位元閘來近似目標操作,並基於 Nielsen 等人的基礎性工作,對所需閘數與合成誤差的關係進行了公式化分析。
第二部分著重於減少「分子基態模擬」所需的量子位元數量,這是一個前景廣闊但資源密集的量子計算應用。本文引入了一個名為「子空間限制 (subspace restriction)」的數學框架,用以分析並擴展如「量子位元高效編碼 (Qubit Efficient Encoding, QEE)」等方法。 該框架的核心是在將分子哈密頓量編碼至量子位元前,先將其限制在一個更小且具物理意義的子空間中。本文提出利用「廣義洪德定則 (generalized Hund's rule)」,並結合粒子數守恆 (particle conservation) 和分子多重度 (molecular multiplicity) 來選擇這些子空間。 論文測試了四種子空間:粒子數守恆、多重度、洪德,以及多重度洪德。 針對 15 種分子的數值模擬和 5 種分子的位能面計算顯示,多重度洪德與洪德子空間提供了最顯著的量子位元數量縮減。 儘管這種縮減會與精確的全組態交互作用 (Full Configuration Interaction, FCI) 結果產生微小且可預測的偏差,但該方法仍能以高空間效率提供可靠的預測。
This thesis explores two key areas in quantum computation: efficient quantum circuit construction and molecular ground state simulation.
The first part addresses the "Unitary Decomposition" problem, which is how to construct a desired unitary operation from a set of basic, physically realizable quantum gates. Classical computers face an "exponential wall," making it difficult to simulate complex quantum systems. Quantum computers may overcome this, but implementing arbitrary operations is not straightforward. This work details a method for decomposing a target unitary operator by finding the shortest path (geodesic) on the special unitary group manifold SU(2n). It establishes a mathematical framework by defining a right-invariant metric using generalized Pauli matrices and derives the geodesic equation to determine the optimal evolution path. The goal is to approximate the desired operation with a sequence of one- and two-qubit gates, with a formal analysis connecting the number of gates to the synthesis error, building upon foundational work by Nielsen and collaborators.
The second part focuses on reducing the qubit requirements for "Molecular Ground State Simulation," a promising but resource-intensive application for quantum computers. The author introduces a mathematical framework called "subspace restriction" to analyze and extend methods like Qubit Efficient Encoding (QEE). This involves restricting the molecular Hamiltonian to a smaller, physically relevant subspace before encoding it into qubits. The thesis proposes using a "generalized Hund's rule" alongside particle conservation and molecular multiplicity to select these subspaces. Four subspaces are tested: Particle Conservation, Multiplicity, Hund, and Multiplicity Hund. Numerical simulations on 15 molecules and potential energy surfaces of 5 molecules demonstrate that the Multiplicity, Hund and Hund subspaces offer the most significant qubit reduction. While this reduction introduces a small, predictable deviation from exact Full Configuration Interaction (FCI) results, the method provides reliable predictions with high spatial efficiency.
[1] P.W. Atkins and J. de Paula. Atkins' Physical Chemistry. OUP Oxford, 2014.
[2] Howard E Brandt. Riemannian geometry of quantum computation. Nonlinear Analysis: Theory, Methods & Applications, 71(12):e474-e486, 2009.
[3] MH Cheng, Yu-Cheng Chen, Qian Wang, Valeria Bartsch, MS Kim, Alice Hu, and Min-Hsiu Hsieh. Unleashing quantum simulation advantages: Hamiltonian subspace encoding for resource efficient quantum simulations. arXiv preprint arXiv:2309.09370, 2023.
[4] The Qiskit Nature developers and contributors. Qiskit nature 0.6.0, April 2023. Qiskit Nature has some code that is included under other licensing. These files have been removed from the zip repository provided here and are only available via GitHub. See https://github.com/Qiskit/qiskit-nature#license for more details.
[5] Mark R Dowling and Michael A Nielsen. The geometry of quantum computation. Quantum Information & Computation, 8(10):861–899, 2008.
[6] Russell D Johnson III. Nist 101. computational chemistry comparison and benchmark database. 1999.
[7] William Kirby, Bryce Fuller, Charles Hadfield, and Antonio Mezzacapo. Second-quantized fermionic operators with polylogarithmic qubit and gate complexity. PRX Quantum, 3(2), 2022.
[8] W. Kutzelnigg and J. D. Morgan. Hund’s rules. Zeitschrift fr Physik D Atoms, Molecules and Clusters, 36(3-4):197–214, 1996.
[9] Lorenzo Leone, Salvatore, Lukasz Cincio, and M. Cerezo. On the practical usefulness of the hardware efficient ansatz. arXiv pre-print server, 2022.
[10] Ming-Xing Luo, Xiu-Bo Chen, Yi-Xian Yang, and Xiaojun Wang. Geometry of quantum computation with qudits. Scientific Reports, 4(1), 2014.
[11] István Mayer. The Hartree-Fock Method, pages 165–225. Springer US, Boston, MA, 2003.
[12] Michael A. Nielsen, Mark R. Dowling, Mile Gu, and Andrew C. Doherty. Quantum computation as geometry. Science, 311(5764):1133–1135, 2006.
[13] Amazon Web Services. Amazon braket, 2020.
[14] Yu Shee, Pei-Kai Tsai, Cheng-Lin Hong, Hao-Chung Cheng, and Hei-Sheng Goan. Qubit-efficient encoding scheme for quantum simulations of electronic structure. Physical Review Research, 4(2), 2022.
[15] Mark Steudtner and Stephanie Wehner. Fermion-to-qubit mappings with varying resource requirements for quantum simulation. New Journal of Physics, 20(6):063010, 2018.
[16] Qiming Sun. Libcint: an efficient general integral library for gaussian basis functions. Journal of Computational Chemistry, 36(22):1664–1671, 2015.
[17] Qiming Sun, Xing Zhang, Samragni Banerjee, Peng Bao, Marc Barbry, Nick S. Blunt, Nikolay A. Bogdanov, George H. Booth, Jia Chen, Zhi-Hao Cui, Janus J. Eriksen, Yang Gao, Sheng Guo, Jan Hermann, Matthew R. Hermes, et al. Recent developments in the pyscf program package. The Journal of Chemical Physics, 153(2):024109, 2020.
[18] Attila Szabo and Neil S Ostlund. Modern quantum chemistry: introduction to advanced electronic structure theory. Courier Corporation, 2012.
[19] Andrew Tranter, Peter J. Love, Florian Mintert, and Peter V. Coveney. A comparison of the bravyi-kitaev and jordan-wigner transformations for the quantum simulation of quantum chemistry. Journal of Chemical Theory and Computation, 14(11):5617–5630, 2018.