簡易檢索 / 詳目顯示

研究生: 戴偉雄
Tai, Wei-Shiung
論文名稱: 鈦金屬雙極板質子交換膜燃料電池性能分析研究
Performance Analysis of Titanium Bipolar Plates in Proton Exchange Membrane Fuel Cells
指導教授: 賴維祥
Lai, Wei Hsiang
共同指導教授: 王偉成
Wang, Wei Cheng
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2025
畢業學年度: 113
語文別: 中文
論文頁數: 100
中文關鍵詞: 質子交換膜燃料電池鈦金屬雙極板氮化鈦鍍膜最佳扭力值加速耐久性測試
外文關鍵詞: Proton Exchange Membrane Fuel Cell, Titanium Bipolar Plates, Titanium Nitride Coating, Optimal Torque, Accelerated Stress Testing
相關次數: 點閱:11下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 質子交換膜燃料電池(PEMFC)具有高效率、低碳排放、快速啟動及模組化等特性,已逐漸成為全球潔淨能源技術的重要發展方向。然而,其性能與材料選擇密切相關,其中雙極板作為燃料電池的核心組件之一,其材料特性對於燃料電池整體性能具有顯著影響。目前常見的雙極板材料如石墨和不銹鋼,分別存在脆性及腐蝕性問題,限制其實際應用範圍。鈦金屬由於具備高強度、優良導電性及卓越耐腐蝕性能,近年逐漸受到研究人員的青睞,特別是在表面進行鍍膜處理後,性能更為突出。
    本研究以鈦金屬雙極板為研究對象,選用純鈦材料,並在其表面鍍覆氮化鈦(TiN)膜,以評估其在質子交換膜燃料電池中之性能表現。實驗方法包括組裝未鍍膜純鈦雙極板電堆與TiN鍍膜純鈦雙極板電堆,並在相同條件下進行比較分析。實驗結果發現,經TiN鍍膜處理之鈦金屬雙極板具有更優異的電化學性能。經量化計算,鍍膜電堆的峰值功率輸出較未鍍膜電堆提高了約50%,證明TiN膜確實可有效降低電極間的接觸電阻。
    為進一步提升電堆性能,本研究亦探討組裝扭力對於電堆性能的影響。透過多次實驗驗證,發現組裝扭力值設定為22.5 kgf-cm時,能達到最佳之整體性能與穩定性表現,此最佳扭力值對於電堆性能與長期運作穩定性均具重要意義。此外,本研究透過加速耐久性測試(Accelerated Stress Testing, AST),進一步驗證鍍膜技術對於提升電堆耐用性之實際效果。AST結果顯示,鍍膜電堆在長時間操作下具有較佳的抗腐蝕能力,有效延長了整體使用壽命。
    本論文聚焦於鈦金屬雙極板在質子交換膜燃料電池(PEMFC)中的性能分析,特別探討純鈦材料與其表面鍍氮化鈦(TiN)膜對電池電化學性能、耐久性的影響,旨在提升PEMFC整體效能與壽命,促進其商業化應用。透過實際實驗數據進行量化性能比較,證明鈦金屬搭配TiN鍍膜處理與最佳扭力值的設定,能夠有效提升PEMFC之性能表現,提供了燃料電池材料選擇與製程參數優化的重要參考依據,具有廣闊的未來應用前景。

    Proton Exchange Membrane Fuel Cells (PEMFC) feature high efficiency, low carbon emissions, rapid start-up capability, and modularity, making them increasingly important in the global clean energy technology landscape. The performance of PEMFC is closely related to material selection, with bipolar plates being one of the critical components significantly influencing overall fuel cell performance. Currently, commonly used bipolar plate materials such as graphite and stainless steel face issues like brittleness and corrosion, limiting their practical application. Titanium, however, has recently gained attention from researchers due to its high strength, excellent conductivity, and superior corrosion resistance, especially when enhanced with surface coating treatments.
    This study focuses on titanium bipolar plates, employing pure titanium material coated with titanium nitride (TiN) to evaluate its performance in PEMFC applications. The experimental methodology involved assembling fuel cell stacks using both untreated pure titanium bipolar plates and TiN-coated bipolar plates, conducting comparative analyses under identical conditions. Results demonstrated that TiN-coated titanium bipolar plates exhibited significantly improved electrochemical performance. Quantitative analysis showed that the peak power output of the coated stack increased by approximately 50% compared to the uncoated stack, confirming the effectiveness of the TiN coating in reducing contact resistance between electrodes.
    To further enhance fuel cell stack performance, the impact of assembly torque was also examined in this study. Multiple experiments indicated that an assembly torque value of 22.5 kgf-cm yielded the optimal overall performance and stability, highlighting the critical role of torque settings in long-term operational stability. Moreover, this research employed Accelerated Stress Testing (AST) to further validate the practical effectiveness of the coating technology in enhancing durability. AST results revealed that the coated stacks exhibited superior corrosion resistance during extended operations, effectively prolonging the overall service life.
    This thesis centers on the performance analysis of titanium bipolar plates in Proton Exchange Membrane Fuel Cells (PEMFC), specifically investigating the effects of pure titanium material and its surface coating with titanium nitride (TiN) on the electrochemical performance and durability of the fuel cells. The goal is to improve the overall performance and lifespan of PEMFCs, thereby promoting their commercial application. By quantitatively comparing practical experimental data, this study confirms that combining titanium with TiN coating and optimal torque settings can significantly enhance PEMFC performance. These findings provide essential reference data for the selection of fuel cell materials and optimization of manufacturing process parameters, presenting extensive potential for future applications.

    中文摘要i Abstract iii 誌謝 v 目錄 vi 表目錄 ix 圖目錄 xi 第一章 緒論 1 1.1 研究背景與動機 1 1.2 研究目的與問題意識 2 1.3 研究範圍與限制 3 1.4 研究方法概述 3 1.5 論文架構說明 3 第二章 文獻回顧與材料演化 5 2.1 質子交換膜燃料電池(PEMFC)的發展概述 5 2.2 PEMFC核心材料介紹 11 2.3 雙極板材料演進 12 2.4 雙極板材料的研究現況與挑戰 13 2.5 鈦金屬雙極板的研究進展與優勢分析 14 2.6 鈦金屬表面處理技術與性能表現 15 第三章 研究方法 17 3.1 性能評估流程 18 3.2 實驗流程架構 18 3.3五級電池堆組裝 19 3.4金屬板成形方式 20 3.5 加速老化(AST)流程 21 3.6 流道成形品質良窳及其影響 24 第四章 實驗平台與AST測試設計 26 4.1 實驗平台建置與設備說明 26 4.2 鈦金屬雙極板樣品準備 38 4.3 AST測試設計 46 4.4 實驗資料與誤差控制 47 4.5 PEMFC電堆啟動階段進行實體測試 48 4.6 數據即時監控與儲存(Arduino人工操作介面) 51 第五章 實驗結果討論與分析 55 5.1 純鈦與純鈦鍍TiN膜I-V-P性能曲線說明 55 5.2 純鈦與純鈦鍍TiN膜I-V-P性能曲線綜合比較 64 5.3 環境因素及鍍膜厚度對AST測試電堆性能影響分析 70 5.4流道成形品質影響測試性能 72 第六章 結論與建議 73 6.1 結論 73 6.2 建議 76 參考文獻 78

    1. Wang, Y., Chen, K. S., Mishler, J., Cho, S. C. and Adroher, X. C. (2011). A review of polymer electrolyte membrane fuel cells: technology, applications, and needs on fundamental research. Applied Energy, 88(4), 981–1007.
    2. Jeon, D. H., Kim, J. and Kim, Y. T. (2012). Corrosion behavior of stainless steel as bipolar plates in proton exchange membrane fuel cell. International Journal of Hydrogen Energy, 37(9), 7660–7665.
    3. Park, Y. C., Kim, J. H. and Lee, J. H. (2014). Development of graphite composite bipolar plates for PEM fuel cells. Renewable Energy, 65, 226–231.
    4. Ho, C. H., Chen, Y. M., Wu, S. H. and Shih, C. Y. (2020). Surface modification of titanium bipolar plates for PEMFC using TiN coating. Journal of Power Sources, 471, 228484.
    5. Li, W., Liu, C., Zhao, J. and Zhang, Y. (2016). TiN coating on titanium bipolar plate by cathodic arc deposition for PEMFC application. Surface and Coatings Technology, 289, 47–53.
    6. Barsoukov, E. and Macdonald, J. R. (2005). Impedance Spectroscopy: Theory, Experiment, and Applications. John Wiley & Sons.
    7. Department of Energy (DOE). (2013). Fuel Cell Technologies Office: Durability Technical Targets.
    8. Jung, T., Kim, H. and Han, J. (2020). Surface treatment techniques on titanium bipolar plates for PEMFCs. Journal of Electrochemical Science and Technology, 11(3), 224–233.
    9. Shi, L., Chen, Y. and Wang, Z. (2022). Corrosion and durability analysis of metal bipolar plates for PEMFC applications. International Journal of Hydrogen Energy, 47(21), 11342–11357.
    10. Kumar, R., Singh, D. and Sharma, R. (2023). DLC coatings on titanium bipolar plates for PEM fuel cells: performance and durability studies. Electrochimica Acta, 445, 142345.
    11. Chen, Y., Li, X. and Sun, Y. (2022). Performance of titanium-based bipolar plates with various coatings in PEM fuel cells. Journal of Power Sources, 539, 231267.
    12. Lee, S., Park, S. and Kim, D. (2021). TiN-coated titanium bipolar plates for enhanced performance of PEM fuel cells. Journal of Power Sources, 512, 230461.
    13. Yang, Z., Ma, J. and Liu, Y. (2022). Surface modification of titanium bipolar plates with ceramic coatings for improved PEMFC performance. Surface and Coatings Technology, 442, 128390.
    14. Li, J., Sun, Q. and Zheng, Y. (2021). Corrosion resistance of anodized titanium bipolar plates in PEM fuel cells. Applied Surface Science, 552, 149401.
    15. Park, J., Han, Y. and Yoon, J. (2021). Electrochemical durability assessment of graphite and metallic bipolar plates. Electrochimica Acta, 370, 137816.
    16. Liu, X., Wang, S. and Hu, T. (2020). PEM fuel cell performance evaluation with different bipolar plate materials. Journal of Power Sources, 453, 227885.
    17. Wu, Z., Tang, X. and Liu, H. (2021). Recent progress on composite bipolar plates for PEM fuel cells. Materials Today Communications, 28, 102496.
    18. Yu, M., Zhou, S. and Jiang, F. (2021). Environmental assessment of proton exchange membrane fuel cells: A life cycle perspective. Journal of Cleaner Production, 318, 128418.
    19. Ma, L., Chen, J. and Zhang, Y. (2023). Numerical simulation and optimization of PEMFC bipolar plates. International Journal of Heat and Mass Transfer, 202, 123618.
    20. Wang, J., Liu, C. and Zhao, J. (2022). Recent advances in materials and designs of bipolar plates for PEM fuel cells. Renewable and Sustainable Energy Reviews, 161, 112357.
    21. Zhang, Y., Chen, X. and Guo, J. (2020). Recent progress in PEM fuel cell materials and system performance. International Journal of Energy Research, 44(5), 3637–3648.
    22. Jung, H., Bae, G. and Kim, K. (2020). Surface characterization and durability of coated metal bipolar plates in PEM fuel cells. International Journal of Hydrogen Energy, 45(25), 13560–13576.
    23. Chen, H., Zeng, X. and Liu, Y. (2023). Enhanced corrosion resistance and conductivity of anodized titanium bipolar plates. Journal of Alloys and Compounds, 938, 168464.
    24. Li, X., Zhang, H. and Wang, Y. (2021). Review of metallic bipolar plates for proton exchange membrane fuel cells: materials and fabrication processes. Renewable and Sustainable Energy Reviews, 144, 111055.
    25. Park, S., Lee, D. and Seo, J. (2021). Surface treatments for graphite bipolar plates in PEM fuel cells. Journal of Electrochemical Science and Technology, 12(1), 1–11.
    26. Li, W., Liu, C., Zhao, J., and Zhang, Y., "TiN coating on titanium bipolar plate by cathodic arc deposition for PEMFC application," Surface and Coatings Technology, vol. 289, pp. 47–53, 2016.
    27. Ho, C. H., Chen, Y. M., Wu, S. H., and Shih, C. Y., "Surface modification of titanium bipolar plates for PEMFC using TiN coating," Journal of Power Sources, vol. 471, pp. 228484, 2020.
    28. Jeon, D. H., Kim, J., and Kim, Y. T., "Corrosion behavior of stainless steel as bipolar plates in proton exchange membrane fuel cell," International Journal of Hydrogen Energy, vol. 37, no. 9, pp. 7660–7665, 2012.
    29. Shi, L., Chen, Y., and Wang, Z., "Corrosion and durability analysis of metal bipolar plates for PEMFC applications," International Journal of Hydrogen Energy, vol. 47, no. 21, pp. 11342–11357, 2022.
    30. Kumar, R., Singh, D., and Sharma, R., "DLC coatings on titanium bipolar plates for PEM fuel cells: performance and durability studies," Electrochimica Acta, vol. 445, pp. 142345, 2023.
    31. Ren, P., Pei, P., Chen, D., Zhang, L., Li, Y., Song, X. and Wang, H. (2022). Corrosion of metallic bipolar plates accelerated by operating conditions in a simulated PEM fuel cell cathode environment. Renewable Energy, 194, 1277–1287.
    32. Ren et al., Renewable Energy, 194 (2022): 1277–1287.[_{{{CITATION{{{_1{](file:///D:/%E6%88%B4%E5%81%89%E9%9B%84/%E6%88%91%E7%9A%84%E8%AB%96%E6%96%87/Corrosion%20of%20metallic%20bipolar%20plates%20accelerated%20by%20operating%20conditions%20in%20a%20simulated%20PEM%20fuel%20cell%20cathode%20environme.pdf)
    33. DOE Fuel Cell Durability Protocols (2017)
    34. ASTM G102-23: Electrochemical Corrosion Rate Calculation
    35. Srinivasan, S., "Fuel Cells: From Fundamentals to Applications," Journal of Power Sources, vol. 86, no. 1–2, pp. 26–32, Mar. 2000, doi: 10.1016/S0378-7753(99)00312-0.
    36. Wang, W. L. and Liu, C. H., "Status of Low-cost Bipolar Plates of Proton Exchange Membrane Fuel Cell," Materials Net, Industrial Technology Research Institute (ITRI), Taiwan, 2014. [Online]. Available: https://www.materialsnet.com.tw/DocDnld.aspx?id=11780
    37. U.S. Department of Energy, “Hydrogen and Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan,” Office of Energy Efficiency and Renewable Energy, 2024. [Online]. Available: https://www.energy.gov/eere/fuelcells/articles/hydrogen-and-fuel-cell-technologies-office-multi-year-research-development
    38. Hussain, A. M., Wu, L., and Kim, H., "The Operating Parameters, Structural Composition, and Fuel Sustainability Aspects of PEM Fuel Cells," Clean Technol., vol. 3, no. 3, pp. 361–379, Sep. 2023. [Online]. Available: https://www.mdpi.com/2673-3994/3/3/28
    39. Zhang, D., Duan, L., Guo, L., Wang, Z., Zhao, J., Tuan, W. H., and Niihara, K., "TiN-coated titanium as the bipolar plate for PEMFC by multi-arc ion plating," International Journal of Hydrogen Energy, vol. 36, no. 15, pp. 9155–9161, 2011, doi:10.1016/j.ijhydene.2011.04.123.
    40. Ushiro, Y., Okai, D., Yamamoto, A., Yamanaka, H., Taniguchi, Y., and Tanaka, Y., "Adhesion and Microstructure of TiN Coating Films Formed on White Layer," Journal of the Japan Institute of Metals, vol. 77, no. 1, pp. 1–6, 2013, doi: 10.2320/jinstmet.77.1.
    41. エアロゾルデポジション法により作製したTiN膜の基礎的特性.
    42.楊承鏵 (2009). 質子交換膜燃料電池之陰極觸媒加速老化研究. 華梵大學機電工程學系碩士論文, 新北市.
    43. Asri, N. F., Husaini, T., Sulong, A.B., Majlan, E.H. and Daud, W.R.W. (2017). Coating of stainless steel and titanium bipolar plates for anticorrosion in PEMFC. International Journal of Hydrogen Energy, 42(14), 9135–9148.
    44. Xu, Z.T., Li, Z.P., Zhang, R., Jiang, T.H. and Peng, L.F. (2021). Fabrication of micro‑channels for titanium PEMFC bipolar plates by multistage forming process. International Journal of Hydrogen Energy, 46(19), 11092.
    45. Xu, Z.T. et al. (2020). Towards mass applications: A review on the challenges and developments in metallic bipolar plates for PEMFC. Progress in Natural Science: Materials International, 30(6), 815.
    46. O'Hayre, R., Cha, S.-W., Colella, W., and Prinz, F. B., Fuel Cell Fundamentals, 3rd ed., Hoboken, NJ, USA: Wiley, 2016.
    47. Barbir, F., PEM Fuel Cells: Theory and Practice, 2nd ed., Boston, MA, USA: Academic Press, 2013.
    48. U.S. Department of Energy, "Fuel Cell Basics," Fuel Cell Technologies Office, 2021. [Online]. Available: https://www.energy.gov/eere/fuelcells/fuel-cell-basics
    49. Zhang, J. Z., Lee, H., and Park, M. S., “Advanced Electrode Structures for Proton Exchange Membrane Fuel Cells,” Int. J. Precis. Eng. Manuf. - Green Technol., vol. 10, no. 1, pp. 123–134, Mar. 2023. [Online]. Available: https://link.springer.com/article/10.1007/s41918-023-00208-3
    50. Kannan, S., Thangavel, V., and Arul, R., “Recent Developments of Polymer Electrolyte Membrane Fuel Cell Design,” J. Electrochem. Sci. Technol., vol. 13, no. 1, pp. 1–15, Jan. 2022. [Online]. Available: https://jecst.org/journal/view.php?doi=10.33961/jecst.2022.00808
    51. Lee, M., “Residual Stress Distribution in PEMFC Bipolar Plate Forming,” Int. J. Hydrogen Energy, vol. 42, no. 18, pp. 13095–13102, May 2017.
    52. Ko, S.-F., “板件彎曲成形回彈機制之研究,” M.S. thesis, Dept. Mech. Eng., Nat. Taiwan Univ., Taipei, Taiwan, 2003.
    53. Chen, C. Y., “發展金屬雙極板以降低質子交換膜燃料電池之成本,” 能源教育資源總中心, 專家專欄, Jul. 2023. [Online]. Available: https://learnenergy.tw/index.php?inter=knowledge&caid=4&id=437
    54. Wang, W. L. et al., “Development of Metallic Bipolar Plates for Proton Exchange Membrane Fuel Cells,” Industrial Technology Research Institute (ITRI), 技術專題報告, 2022. [Online]. Available: https://www.materialsnet.com.tw/DocDnld.aspx?id=25479

    無法下載圖示 校內:2030-08-26公開
    校外:2030-08-26公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE