簡易檢索 / 詳目顯示

研究生: 黃維哲
Huang, Wei-Jhe
論文名稱: 優化以尿素燃燒法合成鍶鋁氧正交晶相共參雜銪鏑離子之長餘輝發光性質之研究
Optimizing long after-glow luminescent properties of Sr4Al14O25:Eu, Dy through urea combustion process
指導教授: 蘇彥勳
Su, Yen-Hsun
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 72
中文關鍵詞: 鋁酸鍶尿素燃燒法長餘輝材料Sr4Al14O25:Eu, Dy
外文關鍵詞: strontium aluminate, urea combustion method, long afterglow material, Sr4Al14O25:Eu, Dy
相關次數: 點閱:84下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在此研究中,本團隊參考許多鋁酸鍶正交晶相的合成法,最後選用最簡單、不耗時,且能產生勻相主體材料的尿素燃燒法來製作長余輝材料-Sr4Al14O25:Eu, Dy。在尚未摻雜稀土元素的情況下,以5 mole%硼酸添加為助熔劑,在1300 ℃,進行燒結得到鋁酸鍶正交晶相,但在摻雜稀土元素後,發現主體晶格的結構組成也跟著有所改變,我們針對稀土元素摻雜量、硼酸添加量及燒結溫度做調整,觀察並坦討改變合成參數對主體晶格和發光現象的影響,我們發現,雖然分別在燒結溫度1200 ℃以及硼酸濃度為10 mole%的情況下,鋁酸鍶正交晶相的比例均達到最高,但是在其發光性質上,卻不是以正交晶相純度最高的樣品,發光強度最高。此外,針對稀土元素摻雜量的討論,當銪離子濃度超過0.5 mole%後發光強度會因濃度淬減現象而降低,當鏑離子濃度超過銪離子五倍時,銪離子無法成為發光中心,受激發電子會以非輻射的形式散失,而在銪離子和鏑離子濃度均為0.1 mole%時,添加5 mole%硼酸,以1300 ℃燒結而成的產物發光強度最高。

    In this study, our team find out many synthetic methods for strontium aluminate-orthorhombic crystal phase. Finally, urea combustion method was chose to make long afterglow material-Sr4Al14O25: Eu, Dy due to the advantage of simplicity, low time-consuming and homogeneous product. In the case of no rare earth elements doped, with 5 mole% boric acid as a flux, sintered at 1300 ℃, strontium aluminate-orthorhombic crystal phase can be obtained. However, in the case of rare earth elements doped, the main structure of the lattice changed. The effect of adjusting synthetic parameters on the lattice and luminescence of the host was observed and discussed. Although the proportion of orthorhombic phase of strontium aluminate was the highest when the sintering temperature was 1200 ℃ or the boric acid concentration was 10 mole%, but the highest luminous intensity did not happen at the highest proportion of orthorhombic phase. In addition, when the europium ion concentration exceeds 0.5 mole%, the luminous intensity will decrease due to concentration quenching phenomenon. When the concentration of dysprosium is more than twice the concentration of europium, europium ions will fail to become the luminous center, and the absorbed energy will be released in a non-radiative way by dysprosium. The phosphor performed the great luminous intensity and longest life-time when the concentration of europium and dysprosium were all 0.5 mole%, boric acid was added 5 mole% and sintered at 1300 ° C.

    摘要‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧I Extend Abstract‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧II 致謝‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧XVIII 總目錄‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧XIX 表目錄‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧XXII 圖目錄‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧XXIII 第一章 緒論 1-1 前言‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧1 1-2 研究動機‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧3 第二章 文獻回顧 2-1 長效螢光粉之演進‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧4 2-2 鋁酸鍶材料介紹‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧6 2-3 發光機制‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧13 第三章 實驗步驟與分析儀器 3-1 實驗材料‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧19 3-2 實驗流程‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧21 3-2.1 實驗流程圖‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧21 3-2.2 正交晶相鋁酸鍶製備‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧22 3-2.3 硼氫化鈉還原反應及二氧化矽包裹之製備‧‧‧‧‧‧‧‧‧‧22 3-2.4 正交晶相鋁酸鍶錠片壓製‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧23 3-3 分析儀器介紹‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧25 3-3.1 X光繞射分析儀‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧25 3-3.2 掃描式電子顯微鏡‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧26 3-3.3 光致發光分析‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧27 第四章 結果與討論 4-1定量稀土離子及硼酸討論燒結溫度對合成Sr4Al14O25 : Eu2+, Dy3+之影響‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧28 4-1.1改變燒結溫度對Sr4Al14O25 : Eu2+, Dy3+之相組成變化‧‧‧‧‧‧‧28 4-1.2改變燒結溫度對Sr4Al14O25 : Eu2+, Dy3+樣品微觀形貌的影響‧‧34 4-1.3改變燒結溫度對Sr4Al14O25 : Eu2+, Dy3+樣品光致發光的影響‧‧‧‧36 4-2固定燒結溫度及硼酸添加量討論稀土離子摻雜量對合成Sr4Al14O25 : Eu2+, Dy3+之影響‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧38 4-2.1 改變稀土離子摻雜濃度對Sr4Al14O25 : Eu2+, Dy3+之相組成變化‧‧38 4-2.2改變稀土離子摻雜濃度對Sr4Al14O25 : Eu2+, Dy3+之光致發光變化‧‧41 4-3定量稀土離子及燒結溫度討論助熔劑添加量對合成Sr4Al14O25 : Eu2+, Dy3+之影響‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧44 4-3.1改變硼酸添加量對Sr4Al14O25 : Eu2+, Dy3+之相組成變化‧‧‧‧‧‧44 4-3.2改變助熔劑-硼酸摻雜量對Sr4Al14O25 : Eu2+, Dy3+樣品微觀形貌的影響‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧51 4-3.3改變助熔劑-硼酸摻雜量對Sr4Al14O25 : Eu2+, Dy3+之光致發光變化‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧53 4-3.4微調燒結溫度對Sr4Al14O25 :Eu2+, Dy3+之影響‧‧‧‧‧‧‧‧‧‧55 4-4 時間解析光致螢光現象‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧58 4-5 使用硼氫化鈉還原法及披覆二氧化矽對Sr4Al14O25 : Eu2+, Dy3+之影響‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧60 4-5.1硼氫化鈉還原法及披覆二氧化矽對Sr4Al14O25 : Eu2+, Dy3+微觀形貌的影響‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧60 4-5.2 使用硼氫化鈉還原法及披覆二氧化矽對Sr4Al14O25 : Eu2+, Dy3+光致發光的影響‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧63 第五章 結論 5-1 結論‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧65 參考文獻‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧67

    1. Rodriguez Garcia, C., et al., Optical and Photocatalytic studies of long persistent Bi co-doped Sr4Al14O25: Eu,Dy. Latin America Optics and Photonics conference, LTh4A.55. (2014)
    2. Jung-Sik Kim, H.-J.S., and Sang-Chul Jung, Synthesis of The TiO2-Long Lasting Phosphor (Sr4Al14O25:Eu2+,Dy3+) Composite and Its Photocatalytic Reaction Properities. Ceramics for Environmental Systems. (2016)
    3. Garcia, C.R., et al., Enhancing the Photocatalytic Activity of Sr4Al14O25:Eu2+,Dy3+ Persistent Phosphors by Codoping with Bi3+ ions. Photochemistry Photobiology, 92, 231-237. (2016)
    4. Shang, M., C. Li, and J. Lin, How to produce white light in a single-phase host?. Chemistry Society Reviews, 43, 5, 1372-1386. (2014)
    5. George, N.C., K.A. Denault, and R. Seshadri, Phosphors for Solid-State White Lighting. Annual Review of Materials Research, 43, 1, 481-501. (2013)
    6. Xu, Y.D., et al., Preparation and luminescent properties of a new red phosphor (Sr4Al14O25:Mn4+) for white LEDs. Journal of Alloys and Compounds, 550, 226-230. (2013)
    7. Dai, P.-P., et al., A single Eu2+-activated high-color-rendering oxychloride white-light phosphor for white-light-emitting diodes. Light: Science & Applications, 5, e16024. (2016)
    8. Kim, Y.H., et al., A zero-thermal-quenching phosphor. Nature Materials, 16, 5, 543-550. (2017)
    9. Kanno, H., K. Noda, and K. Matsui, New long-afterglow phosphors: Yb2+-doped strontium aluminates. Chemical Physics Letters, 580, 103-107. (2013)
    10. Rodrigues, L.C.V., et al., Discovery of the Persistent Luminescence Mechanism of CdSiO3:Tb3+. The Journal of Physical Chemistry C, 116, 20, 11232-11240. (2012)
    11. Peng, W.Q., et al., Synthesis and photoluminescence of ZnS:Cu nanoparticles. Optical Materials, 29, 2-3, 313-317. (2006)
    12. Zhong, R., et al., Red phosphorescence in Sr4Al14O25:Cr3+ ,Eu2+,Dy3+ through persistent energy transfer. Applied Physics Letters, 88, 20, 201916. (2006)
    13. Zhang, S., et al., Green photoluminescence, but blue afterglow of Tb3+ activated Sr4Al14O25. Journal of Luminescence, 130, 11, 2223-2225. (2010)
    14. Zúñiga-Rivera, N.J., et al., Thermally and optically stimulated luminescence in long persistent orthorhombic strontium aluminates doped with Eu, Dy and Eu, Nd. Optical Materials, 67, 91-97. (2017)
    15. Zhuang, Y., et al., A brief review on red to near-infrared persistent luminescence in transition-metal-activated phosphors. Optical Materials, 36, 11, 1907-1912. (2014)
    16. Smet, P.F., et al., Persistent luminescence in nitride and oxynitride phosphors: A review. Optical Materials, 36, 11, 1913-1919. (2014)
    17. Peng, M., et al., Site Occupancy Preference, Enhancement Mechanism, and Thermal Resistance of Mn4+ Red Luminescence in Sr4Al14O25:Mn4+ for Warm WLEDs. Chemistry of Materials, 27, 8, 2938-2945. (2015)
    18. Zou, Z., et al., Structure, long persistent luminescent properties and mechanism of a novel efficient red emitting Ca2Ga2GeO7:Pr3+ phosphor. Journal of Alloys and Compounds, 680, 397-405. (2016)
    19. Luitel, H.N., et al., Preparation and Characteristics of Eu and Dy Doped Sr4Al14O25 Phosphor. Materials Science Forum, 569, 249-252. (2008)
    20. Van den Eeckhout, K., P.F. Smet, and D. Poelman, Persistent Luminescence in Eu2+-Doped Compounds: A Review. Materials, 3, 4, 2536-2566. (2010)
    21. Thai, D.V., et al., The photoluminescence enhancement of Mn2+ ions and the crystal field in ZnS:Mn nanoparticles covered by polyvinyl alcohol. Optical and Quantum Electronics, 48, 362. (2016)
    22. Y.Y. Chen, J.G.D., B.S. Chiou, C.G. Peng, Luminescent mechanisms of ZnS:Cu:Cl and ZnS:Cu:Al phosphors. Thin Solid Films, 392, 1, 50-55. (2001)
    23. Carley Corrado, Y.J., Fadekemi Oba, Mike Kozina, Frank Bridges, and Jin Z. Zhang, Synthesis, Structural, and Optical Properties of Stable ZnS:Cu,Cl Nanocrystals. Journal of Physical Chemistry A, 113, 1, 3830-3839. (2009)
    24. Anesh, M.P., et al., Developments in Eu+2-Doped Strontium Aluminate and Polymer/Strontium Aluminate Composite. Advances in Polymer Technology, 33, S1, 21436. (2014)
    25. Eliseeva, S.V. and J.C. Bunzli, Lanthanide luminescence for functional materials and bio-sciences. Chemistry Society Reviews, 39, 1, 189-227. (2010)
    26. Ogata, H., et al., Factors for determining photoluminescence properties of YBO3:Ce3+ phosphor prepared by hydrothermal method. Optical Materials, 33, 11, 1820-1824. (2011)
    27. Misevicius, M., et al., On the sol–gel fabrication and characterization of undoped and cerium-doped Sr4Al14O25. Journal of Alloys and Compounds, 614, 44-48. (2014)
    28. Demirci, S., et al., Synthesis and spectral characterization of Sr4Al14O25:Eu2+/Dy3+ blue–green phosphorous powders by sol–gel method. Materials Science in Semiconductor Processing, 31, 611-617. (2015)
    29. Bum-Joon Kim, Z.H.a.J.-S.K., Synthesis and characterization of long persistence Sr4Al14O25:Eu2+,Dy3+ phosphor prepared by combustion method. Journal of Ceramic Processing Research, 14, 5, 601-605. (2013)
    30. Zhao, C., et al., Synthesis of Sr4Al14O25: Eu2+,Dy3+ phosphor nanometer powders by combustion processes and its optical properties. Materials Science and Engineering: B, 133, 1-3, 200-204. (2006)
    31. Zand, S.K., S. Baghshahi, and M. Rajabi, The effect of Eu and Dy dopants on the luminescence properties of Sr4Al14O25: Eu2+,Dy3+ phosphorescent nano-pigments prepared by the solution combustion method. Journal of Materials Science-Materials in Electronics, 27, 12, 12533-12538. (2016).
    32. Chang, C., Z. Yuan, and D. Mao, Eu2+ activated long persistent strontium aluminate nano scaled phosphor prepared by precipitation method. Journal of Alloys and Compounds, 415, 1-2, 220-224. (2006)
    33. Xiao, Q., et al., Synthesis and luminescence properties of needle-like SrAl2O4:Eu, Dy phosphor via a hydrothermal co-precipitation method. Journal of Physics and Chemistry of Solids, 71, 7, 1026-1030. (2010)
    34. Shi, W.S., et al., Novel Structural Behavior of Strontium Aluminate Doped with Europium. Journal of The Electrochemical Society, 151, 5, H97. (2004)
    35. Wu, Z., et al., Synthesis and luminescent properties of Sr4Al14O25: Eu2+ blue–green emitting phosphor for white light-emitting diodes (LEDs). Journal of Materials Science: Materials in Electronics, 19, 4, 339-342. (2007)
    36. Luitel, H.N., et al., Giant Improvement on the Afterglow of Sr4Al14O25: Eu2+, Dy3+ Phosphor by Systematic Investigation on Various Parameters. Journal of Materials, 2013, 1-10. (2013)
    37. Li, Q., J. Zhao, and F. Sun, Energy transfer mechanism of Sr4Al14O25: Eu2+ phosphor. Journal of Rare Earths, 28, 1, 26-29. (2010)
    38. Yuanhua Lin, Z.T.Z.Z., Preparation of long-afterglow Sr4Al14O25-based luminescent material and its optical properties. Materials Letters, 51, 1, 14-18. (2001)
    39. Jiang, T., et al., Luminescence decay evaluation of long-afterglow phosphors. Physica B: Condensed Matter, 450, 94-98. (2014)
    40. Dutczak, D., et al., Anomalous trapped exciton and d-f emission in Sr4Al14O25: Eu2+. Journal of Physical Chemistry A, 118, 9, 1617-1621. (2014)
    41. Zhang, B., et al., Relation between structure conversion and spectra-tuning properties of Eu2+-doped strontium aluminate phosphor. Journal of Materials Science, 52, 13, 8188-8199. (2017)
    42. Thube, D.R., S. Kang, and H. Ryu, Effect of B2O3 on the Photoluminescence Properties of Sr4Al14O25: Eu2+, Dy3+ Phosphor. Geosystem Engineering, 12, 2, 17-20. (2009)
    43. Yan, J.P., et al., Surface Modification of Long Afterglow Sr4Al14O25: Dy,Eu Phosphor by Silica Coating. Key Engineering Materials, 280-283, 509-512. (2005)
    44. Emen, F.M., et al., Thermoluminescence studies and detailed kinetic analysis of Sr4Al14O25: Eu2+, Dy3+ phosphor. Journal of Luminescence, 144, 133-138. (2013)
    45. Sharma, V., et al., Potential of Sr4Al14O25: Eu2+, Dy3+ inorganic oxide-based nanophosphor in Latent fingermark detection. Journal of Materials Science, 49, 5, 2225-2234. (2013)
    46. Xiang Ying Chen, C.M., Xiao Xuan Li, Cheng Wu Shi, Xue Liang Li and Dao Rong Lu, Novel Necklace-like MAl2O4: Eu2+, Dy3+ (M = Sr, Ba, Ca) Phosphors via a CTAB-Assisted Solution-Phase Synthesis and Postannealing Approach. Journal of Physical Chemistry C, 113, 7, 2685-2689. (2009)
    47. M. P. Anesh, et al., Developments in Eu+2-Doped Strontium Aluminate and Polymer/Strontium Aluminate Composite. Advances in Polymer Technology, 33, S1, 21436. (2014)
    48. Zakharchuk, K.V., A.A. Yaremchenko, and D.P. Fagg, Electrical properties and thermal expansion of strontium aluminates. Journal of Alloys and Compounds, 613, 232-237. (2014)

    下載圖示 校內:2022-08-24公開
    校外:2022-08-24公開
    QR CODE