| 研究生: |
楊政錡 Yang, Jheng-Ci |
|---|---|
| 論文名稱: |
利用MIS結構於鍺基板探討歐姆接觸之特性 Investigation of MIS Structure for Ohmic Contact on n-type Germanium Substrate |
| 指導教授: |
王永和
Wang, Yeong-Her 李耀仁 Lee, Yao-Jen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 微電子工程研究所 Institute of Microelectronics |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 英文 |
| 論文頁數: | 87 |
| 中文關鍵詞: | 鍺 、MIS結構 、歐姆接觸 、二氧化鈦 、熱穩定性 、結晶化 |
| 外文關鍵詞: | Germanium, MIS structure, Ohmic contact, TiO2, thermal stability, crystallization |
| 相關次數: | 點閱:88 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文主要利用二氧化鈦絕緣層於n型鍺基板製備MIS結構,搭配各式的金屬來探討歐姆接觸之特性,其中鎢與二氧化鈦結合的MIS結構具備最低的蕭特基位能障,為74.6毫電子伏特。由於二氧化鈦的熱穩定性不佳,經過退火處理後容易有結晶現象發生,且結晶情況與絕緣層厚度有明顯的相依性。因此利用射頻濺鍍的氮電漿或原子層沉積的金屬先驅物如鋁(Al)、鉿(Hf)、鋯(Zr)元素於二氧化鈦絕緣層作為摻雜,觀察退火後電性之改善程度,發現沉積後氫氣退火(PDHA)能有效地改善電性表現,並確認金屬及氧化物之界面擴散對熱穩定性有顯著的影響。
In this thesis, a TiO2 insulator is used to fabricate MIS structure with various metal top layers on n-type Ge substrate to investigate the Ohmic contact characteristics. The combination of tungsten and TiO2 for MIS contact depicts the lowest barrier height about 74.6 meV. Nevertheless, all splits are easily crystallized after annealing process since the thermal stability of TiO2 is poor. Also, the crystalline phenomenon is dependent on the thickness of insulator. Therefore, one can observe the variations in the electrical characteristics after annealing by doping in TiO2 with nitrogen plasma of RF sputter or metal precursors of ALD, such as Al, Hf, and Zr elements. The characteristics are effectively improved after the PDHA process. Furthermore, there is a significant influence on thermal stability owing to the interlayer mixing between metal and oxide layers.
[1] C. D. Young, "Enabling Semiconductor Innovation and Growth-EUV lithography drives Moore's law well into the next decade," in APAC TMT Conference, Taipei, Taiwan, p. 10, 2018.
[2] H. Yu et al., "Heterostructure at CMOS source/drain: Contributor or alleviator to the high access resistance problem?," in 2016 IEEE International Electron Devices Meeting (IEDM), pp. 25.1.1-25.1.4, 2016.
[3] S. Narasimha et al., "A 7nm CMOS technology platform for mobile and high performance compute application," in 2017 IEEE International Electron Devices Meeting (IEDM), pp. 29.5.1-29.5.4, 2017.
[4] M. Badaroglu, "More Moore scaling: opportunities and inflection points," ITRS Emerging Research Devices(ERD) workshop, p. 15, 2015.
[5] A. Thean et al., "Impact of multi-gate device architectures on digital and analog circuits and its implications on System-On-Chip technologies," in 2013 IEEE International Electron Devices Meeting, pp. 17.3.1-17.3.3, 2013.
[6] K. C. Saraswat and G. Shine, "Low Resistance Contacts to Nanoscale Semiconductor Devices," ECS Transactions, vol. 75, no. 8, pp. 513-523, 2016.
[7] T. Nishimura, K. Kita, and A. Toriumi, "Evidence for strong Fermi-level pinning due to metal-induced gap states at metal/germanium interface," Applied Physics Letters, vol. 91, no. 12, p. 123123, 2007.
[8] A. Dimoulas, P. Tsipas, A. Sotiropoulos, and E. K. Evangelou, "Fermi-level pinning and charge neutrality level in germanium," Applied Physics Letters, vol. 89, no. 25, p. 252110, 2006.
[9] P. Paramahans Manik et al., "Fermi-level unpinning and low resistivity in contacts to n-type Ge with a thin ZnO interfacial layer," Applied Physics Letters, vol. 101, no. 18, p. 182105, 2012.
[10] P. Paramahans et al., "ZnO: an attractive option for n-type metal-interfacial layer-semiconductor (Si, Ge, SiC) contacts," in 2012 Symposium on VLSI Technology (VLSIT), pp. 83-84, 2012.
[11] G.-S. Kim et al., "Effective Schottky Barrier Height Lowering of Metal/n-Ge with a TiO2/GeO2 Interlayer Stack," ACS Applied Materials & Interfaces, vol. 8, no. 51, pp. 35419-35425, 2016.
[12] Y. Seo et al., "Fermi Level Depinning in Ti/GeO2/n-Ge via the Interfacial Reaction Between Ti and GeO2," IEEE Transactions on Electron Devices, vol. 64, no. 10, pp. 4242-4245, 2017.
[13] Y. Zhou, M. Ogawa, X. Han, and K. L. Wang, "Alleviation of Fermi-level pinning effect on metal/germanium interface by insertion of an ultrathin aluminum oxide," Applied Physics Letters, vol. 93, no. 20, p. 202105, 2008.
[14] D. Lee, S. Raghunathan, R. J. Wilson, D. E. Nikonov, K. Saraswat, and S. X. Wang, "The influence of Fermi level pinning/depinning on the Schottky barrier height and contact resistance in Ge/CoFeB and Ge/MgO/CoFeB structures," Applied Physics Letters, vol. 96, no. 5, p. 052514, 2010.
[15] G.-S. Kim et al., "Fermi-Level Unpinning Technique with Excellent Thermal Stability for n-Type Germanium," ACS Applied Materials & Interfaces, vol. 9, no. 41, pp. 35988-35997, 2017.
[16] G. S. Kim et al., "Effect of Hydrogen Annealing on Contact Resistance Reduction of Metal-Interlayer-n-Germanium Source/Drain Structure," IEEE Electron Device Letters, vol. 37, no. 6, pp. 709-712, 2016.
[17] D. Biswas, J. Biswas, S. Ghosh, B. Wood, and S. Lodha, "Enhanced thermal stability of Ti/TiO2/n-Ge contacts through plasma nitridation of TiO2 interfacial layer," Applied Physics Letters, vol. 110, no. 5, p. 052104, 2017.
[18] J. Y. J. Lin, A. M. Roy, A. Nainani, Y. Sun, and K. C. Saraswat, "Increase in current density for metal contacts to n-germanium by inserting TiO2 interfacial layer to reduce Schottky barrier height," Applied Physics Letters, vol. 98, no. 9, p. 092113, 2011.
[19] S. Dev, N. Remesh, Y. Rawal, P. P. Manik, B. Wood, and S. Lodha, "Low resistivity contact on n-type Ge using low work-function Yb with a thin TiO2 interfacial layer," Applied Physics Letters, vol. 108, no. 10, p. 103507, 2016.
[20] B.-Y. Tsui and M.-H. Kao, "Mechanism of Schottky barrier height modulation by thin dielectric insertion on n-type germanium," Applied Physics Letters, vol. 103, no. 3, p. 032104, 2013.
[21] J. Y. J. Lin, A. M. Roy, Y. Sun, and K. C. Saraswat, "Metal-Insulator-Semiconductor Contacts on Ge: Physics and Applications," in 2012 International Silicon-Germanium Technology and Device Meeting (ISTDM), pp. 1-2, 2012.
[22] J. Y. J. Lin, A. M. Roy, and K. C. Saraswat, "Reduction in Specific Contact Resistivity to n+Ge Using TiO2 Interfacial Layer," IEEE Electron Device Letters, vol. 33, no. 11, pp. 1541-1543, 2012.
[23] G. S. Kim et al., "Specific Contact Resistivity Reduction Through Ar Plasma-Treated TiO2-x Interfacial Layer to Metal/Ge Contact," IEEE Electron Device Letters, vol. 35, no. 11, pp. 1076-1078, 2014.
[24] L. Hutin et al., "Schottky Barrier Height Extraction in Ohmic Regime: Contacts on Fully Processed GeOI Substrates," Journal of The Electrochemical Society, vol. 156, no. 7, pp. H522-H527, 2009.
[25] I. R. Kaufmann, M. B. Pereira, and H. I. Boudinov, "Apparent Schottky Barrier Height of MIS Ni/SiC diodes," in 2015 30th Symposium on Microelectronics Technology and Devices (SBMicro), pp. 1-5, 2015.
[26] K. Ikeda, T. Maeda, and S.-i. Takagi, "Characterization of platinum germanide/Ge(100) Schottky barrier height for Ge channel Metal Source/Drain MOSFET," Thin Solid Films, vol. 508, no. 1, pp. 359-362, 2006.
[27] Z. Li, X. An, Q. Yun, M. Lin, X. Zhang, and R. Huang, "Tuning Schottky Barrier Height in Metal/n-Type Germanium by Inserting an Ultrathin Yttrium Oxide Film," ECS Solid State Letters, vol. 1, no. 4, pp. Q33-Q34, 2012.
[28] D. K. Schroder, Semiconductor Material and Device Characterization, 3rd ed. Wiley, 2006.
[29] N. Remesh et al., "Contact barrier height and resistivity reduction using low work-function metal (Yb)-interfacial layer-semiconductor contacts on n-type Si and Ge," in 2015 73rd Annual Device Research Conference (DRC), pp. 145-146, 2015.
[30] G. S. Marlow and M. B. Das, "The effects of contact size and non-zero metal resistance on the determination of specific contact resistance," Solid-State Electronics, vol. 25, no. 2, pp. 91-94, 1982.
[31] P. P. Manik, S. Dev, N. Remesh, Y. Rawal, S. Khopkar, and S. Lodha, "Ge n-channel FinFET performance enhancement using low work function metal-interfacial layer-Ge contacts," in 2017 International Symposium on VLSI Technology, Systems and Application (VLSI-TSA), pp. 1-2, 2017.
[32] H. Yu et al., "A Simplified Method for (Circular) Transmission Line Model Simulation and Ultralow Contact Resistivity Extraction," IEEE Electron Device Letters, vol. 35, no. 9, pp. 957-959, 2014.
[33] K. H. Kao and L. Y. Chen, "A Dopingless FET With Metal-Insulator-Semiconductor Contacts," IEEE Electron Device Letters, vol. 38, no. 1, pp. 5-8, 2017.
[34] L. Y. Chen, Y. F. Hsieh, and K. H. Kao, "Undoped SiGe FETs with metal-insulator-semiconductor contacts," in 2017 Silicon Nanoelectronics Workshop (SNW), pp. 95-96, 2017.
[35] L. Y. Chen, Y. F. Hsieh, and K. H. Kao, "Undoped and Doped Junctionless FETs: Source/Drain Contacts and Immunity to Random Dopant Fluctuation," IEEE Electron Device Letters, vol. 38, no. 6, pp. 708-711, 2017.
[36] G. Shine and K. C. Saraswat, "Analysis of Atomistic Dopant Variation and Fermi Level Depinning in Nanoscale Contacts," IEEE Transactions on Electron Devices, vol. 64, no. 9, pp. 3768-3774, 2017.
[37] E. Bury et al., "Self-heating in FinFET and GAA-NW using Si, Ge and III/V channels," in 2016 IEEE International Electron Devices Meeting (IEDM), pp. 15.6.1-15.6.4, 2016.
[38] A. Agrawal, N. Shukla, K. Ahmed, and S. Datta, "A unified model for insulator selection to form ultra-low resistivity metal-insulator-semiconductor contacts to n-Si, n-Ge, and n-InGaAs," Applied Physics Letters, vol. 101, no. 4, p. 042108, 2012.
[39] N. Jain, Y. Zhu, D. Maurya, R. Varghese, S. Priya, and M. K. Hudait, "Interfacial band alignment and structural properties of nanoscale TiO2 thin films for integration with epitaxial crystallographic oriented germanium," Journal of Applied Physics, vol. 115, no. 2, p. 024303, 2014.
[40] B. D. Briggs et al., "Fully aligned via integration for extendibility of interconnects to beyond the 7 nm node," in 2017 IEEE International Electron Devices Meeting (IEDM), pp. 14.2.1-14.2.4, 2017.
[41] A. G. Scheuermann et al., "Titanium Oxide Crystallization and Interface Defect Passivation for High Performance Insulator-Protected Schottky Junction MIS Photoanodes," ACS Applied Materials & Interfaces, vol. 8, no. 23, pp. 14596-14603, 2016.
[42] C. Tekin, "Transmission Electron Microscopy Structure, Function and 3D Reconstruction," 2011 International Science and Engineering Visualization Challenge, 2011.
[43] H. Kumagai, M. Matsumoto, K. Toyoda, M. Obara, and M. Suzuki, "Fabrication of titanium oxide thin films by controlled growth with sequential surface chemical reactions," Thin Solid Films, vol. 263, no. 1, pp. 47-53, 1995.
[44] J. Aarik, A. Aidla, T. Uustare, and V. Sammelselg, "Morphology and structure of TiO2 thin films grown by atomic layer deposition," Journal of Crystal Growth, vol. 148, no. 3, pp. 268-275, 1995.
[45] E. T. Fitzgibbons, K. J. Sladek, and W. H. Hartwig, "TiO2 Film Properties as a Function of Processing Temperature," Journal of The Electrochemical Society, vol. 119, no. 6, pp. 735-739, 1972.
校內:2023-08-01公開