| 研究生: |
郭泓亨 Guo, Hong-Heng |
|---|---|
| 論文名稱: |
己二腈電解合成中電位效應之研究: 動力學模擬與合成表現 A Study on the Potential Effect on Electrosynthesis of Adiponitrile: Kinetic Simulation and Synthesis Performance |
| 指導教授: |
楊明長
Yang, Ming-Chang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2022 |
| 畢業學年度: | 110 |
| 語文別: | 中文 |
| 論文頁數: | 120 |
| 中文關鍵詞: | 丙烯腈 、己二腈 、電解合成 、動力學模擬 、定電位 、丙烯腈氧化 |
| 外文關鍵詞: | Acrylonitrile, Adiponitrile, Electrolytic synthesis, Kinetic simulation, Constant potential, Acrylonitrile oxidation |
| 相關次數: | 點閱:91 下載:5 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
己二腈是生產尼龍66的重要化學原料,尼龍66具有剛性佳、良好的耐磨性、熱尺寸穩定性、絕佳的耐耗損性及較低摩擦性質,因此廣泛利用在很多領域上。己二腈可透過丙烯腈電解加氫二聚法得到,但生產技術被少數國際大廠壟斷。為了確保原物料供應的穩定性及避免價格被他國廠商控制,影響台灣輕重工業的成本及發展,因此台灣是必須自行發展己二腈的生產技術。
本研究針對兩個電化學反應共存的系統進行動力學塔弗曲線模擬,以解釋實驗當中所得塔弗曲線。轉移係數及電子轉移數是影響兩反應共存系統中的塔弗曲線出現平台區的主要因素,兩反應的平衡電位差很小(100 mA)時,整體的塔弗曲線較不易出現平台區,兩反應的交換電流密度相差甚大,交換電流密度大者主宰了整體的塔弗曲線。比對實驗所得的塔弗曲線與模擬的結果,研判己二腈電解合成反應的平衡電位約落在-1.5 V vs. Ag/AgCl。並推論在-0.55~ -1.7 V vs. Ag/AgCl下反應主要為析氫反應,在-1.7~ -3.0 V vs. Ag/AgCl下反應主要為己二腈的電合成反應。己二腈電解合成反應與析氫反應的轉移係數差大,且己二腈電解合成反應的轉移係數趨近於1。析氫反應的交換電流密度較己二腈電解合成反應大很多。透過線性掃描法、塔弗曲線、電化學阻抗分析探討電解液中各種添加物的基本電化學性質。塔弗曲線及電化學阻抗分析的結果顯示四級胺鹽對於析氫反應有抑制效應,並促使質傳效應更明顯。
在合成表現上,本研究以定電位在旋轉套管槽中進行己二腈電解反應,探討轉速(0~ 2000 rpm)、初始丙烯腈濃度(0.1~ 0.7 M)、初始己二腈濃度(0~ 0.4 M)、陰極電位(-2.0~ -3.1 V vs. Ag/AgCl)在無隔離膜式反應器中對於合成表現的影響。定電位操作比起實務上的定電流操作更能針對反應機制進行研究,旋轉電極用以模擬實務上的高流速系統。結果顯示當轉速及初始丙烯腈濃度越大時,所得的己二腈選擇率越大,但其產率分別在1200 rpm及0.7 M時趨於穩定。在電位大約落在-2.0~ -2.3 V vs. Ag/AgCl時電位越負,反應驅動力增大,各產物產率增加;在電位落在-2.3~ -3.1 V vs. Ag/AgCl時電位夠負各產物產率增大,但供給AN不足出現競爭現象,以致PN產率大於ADN產率,使ADN產率出現鋒。最後,利用隔離膜式反應器模擬無隔離膜是反應器中不鏽鋼陽極的行為,並確認AN在不鏽鋼陽極會發生氧化反應。
Adiponitrile is the importance raw material for manufacturing nylon 6,6. In this study, kinetic simulation about Tafel curve is performed for a system in which two electrochemical reactions coexist. Linear sweep method, Tafel curve, electrochemical impedance analysis are performed to study the fundamental electrochemical property. Adiponitrile electrolytic was carried out by the constant potential synthesis in the undivided reactor, and the effects of rotating rate, initial acrylonitrile concentration, initial adiponitrile concentration and cathode potential on synthesis performance were discussed. Finally, indicate the possibility of oxidation of acrylonitrile on the stainless steel anode by carrying out the experiments in divided reactor in order to simulate the stainless steel anode in the undivided reactor.
In the kinetic simulation, the results show that the transfer coefficient and the electron transfer number are the main factors affecting the plateau region of the Tafel curve in the system that two reactions coexist, and if the exchange current densities of the two reactions are very different, the reaction that has higher exchange current density dominant the overall Tafel curve. In the comparison of Tafel plot between the experiment and simulation, it is found that the difference of the transfer coefficient between the electrolytic synthesis reaction of adiponitrile and the hydrogen evolution reaction in the experimental system is large, and the transfer coefficient of the electrolytic synthesis reaction of adiponitrile is close to 1. In addition, the exchange current density of the hydrogen evolution reaction is much larger than that of the electrolytic synthesis of adiponitrile. In aspect of synthesis performance, it was found that when the rotational speed and the initial concentration of acrylonitrile increased, the selectivity of the obtained adiponitrile was greater, but the production rate tended to be stable at 1200 rpm and 0.7 M respectively. In the effect of the cathodic potential, the main production reaction was found to change from adiponitrile to propionitrile as the potential became more negative, and when the acrylonitrile concentration was higher, the potential at which the transition tale place became more negative. Finally, it found that acrylonitrile oxidize in the stainless steel anode.
Firouzi, E. , An Overview of Acrylonitrile Production Methods: Comparison of Carbon Fiber Precursors and Marketing. Mini-Reviews in Organic Chemistry, 2020. 17(5): p. 570-588.
George, E., J. Joy, and S. Anas, Acrylonitrile-based polymer/graphene nanocomposites: A review. Polymer Composites, 2021. 42(10): p. 4961-4980.
F., B., APPL ELECTROCHEM, 1972(2): p. 59.
Evers, R., Development of a Liquid Chromatography Ion Trap Mass Spectrometer Method for Clinical Drugs of Abuse Testing with Automated On-Line Extraction Using Turbulent Flow Chromatography. 2014.
马淳安, 有机电化学合成导论. 2002: 科學出版社.
Keith Scott, B.H., Alistair N. Haines and Ion F. McConvey, A Reaction Model for the Electrochemical Synthesis of Adiponitrile. Chem. Eng. Technol., 1990. 13: p. 376-383.
Bastião, D.S., I.N. Caxiano, and D.M. Prata, Study of the eco-efficiency of acrylonitrile production processes. Sistemas & Gestão, 2019. 14(1): p. 39-49.
Jinli, Q., L. Yuyu, and Z. Jiujun, Electrode Kinetics of CO Electroreduction, in Electrochemical Reduction of Carbon Dioxide. 2016, CRC Press.
Zhu, Y. , A review of adiponitrile industrial production processes and associated atom economies. Chinese Science Bulletin (Chinese Version), 2015. 60: p. 1488.
Liu, K., S. Zhang, and M. Han, Mechanistic Investigation on Hydrocyanation of Butadiene: A DFT Study. Catalysts, 2020. 10(8).
Karimi, P.F., F. Mohammadi, and S.N. Ashrafizadeh, An Experimental Study of the Competing Cathodic Reactions in Electrohydrodimerization of Acrylonitrile. Journal of The Electrochemical Society, 2011. 158: p. E129-E135.
Blanco, D.E., A.Z. Dookhith, and M.A. Modestino, Enhancing selectivity and efficiency in the electrochemical synthesis of adiponitrile. Reaction Chemistry & Engineering, 2019. 4(1): p. 8-16.
Huang, X. , Coverage-dependent acrylonitrile adsorption and electrochemical reduction kinetics on Pb electrode. Chemical Engineering Journal, 2020. 382: p. 123006.
Perini, N. , Electrochemical impedance spectroscopy for in situ petroleum analysis and water-in-oil emulsion characterization. Fuel, 2012. 91(1): p. 224-228.
Song, L. , Study of nylon 66–clay nanocomposites via condensation polymerization. Colloid and Polymer Science, 2008. 286(6): p. 721-727.
Suwanvaipattana, P. , Modeling of electro-organic synthesis to facilitate cleaner chemical manufacturing: Adiponitrile production. Journal of Cleaner Production, 2016. 142.
Betke, T. , Biocatalytic production of adiponitrile and related aliphatic linear α,ω-dinitriles. Nature Communications, 2018. 9.
Dai, J.J. , Electrochemical Synthesis of Adiponitrile from the Renewable Raw Material Glutamic Acid. Chemsuschem, 2012. 5(4): p. 617-620.
Research., G.V., Adiponitrile Market Size, Share & Trends Analysis Report By Application (Nylon Synthesis, Electrolyte Solution), By End Use (Automotive, Electricals & Electronics), By Region, And Segment Forecasts, 2019 - 2025. Grand View Research, 2020.
Bajaj, P., D.K. Paliwal, and A.K. Gupta, Modification of acrylic fibres for specific end uses. Indian Journal of Fiber & Textile Research, 1996. 21: p. 143-154.
Frontana-Uribe, B.A. , Organic electrosynthesis: a promising green methodology in organic chemistry. Green Chemistry, 2010. 12(12): p. 2099-2119.
Baizer, M.M., Reviews of Applied Electrochemistry .2. Prospects for Further Industrial Applications of Organic Electrosynthesis. Journal of Applied Electrochemistry, 1980. 10(3): p. 285-290.
Wu, S. , Acrylonitrile Conversion on Metal Cathodes: How Surface Adsorption Determines the Reduction Pathways. Industrial & Engineering Chemistry Research, 2021. 60(23): p. 8324-8330.
Beck, F., Cathodic Dimerization. Angewandte Chemie International Edition in English, 1972. 11(9): p. 760-781.
Montenegro, M.I. and D. Pletcher, Ultramicroelectrodes for the study of the mechanism of electrosynthetic reactions: The hydrodimerisation of acrylonitrile. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1988. 248(1): p. 229-232.
Couper, A.M., D. Pletcher, and F.C. Walsh, Electrode materials for electrosynthesis. Chemical Reviews, 1990. 90(5): p. 837-865.
Karimi, F., S.N. Ashrafizadeh, and F. Mohammadi, Process parameter impacts on adiponitrile current efficiency and cell voltage of an electromembrane reactor using emulsion-type catholyte. Chemical Engineering Journal, 2012. 183: p. 402-407.
Pavia, D.L., Introduction to organic laboratory techniques : a microscale approach. 1999: p. 589-590.
A.J. Bard, L.R.F., J. Leddy, C.G. Zoski, Electrochemical methodes: fundamentals and applications. 1980.
Macdonald, D.D., Reflections on the history of electrochemical impedance spectroscopy. Electrochimica Acta, 2006. 51(8): p. 1376-1388.
Napporn, T.W. , Chapter 9 - Electrochemical Measurement Methods and Characterization on the Cell Level, in Fuel Cells and Hydrogen, V. Hacker and S. Mitsushima, Editors. 2018, Elsevier. p. 175-214.
Li, D. , Tafel analysis in practice. Journal of Electroanalytical Chemistry, 2018. 826: p. 117-124.
Sheng, W., H.A. Gasteiger, and Y. Shao-Horn, Hydrogen Oxidation and Evolution Reaction Kinetics on Platinum: Acid vs Alkaline Electrolytes. Journal of The Electrochemical Society, 2010. 157(11): p. B1529.
Goor, C.v.d., Influence of temperature and pH on the hydrogen evolution reaction (HER) on platinum. TNW: Science and Technology, 2015.
Popov, K., P. Zivkovic, and N. Nikolić, A mathematical model of the current density distribution in electrochemical cells. Journal of the Serbian Chemical Society, 2011. 76: p. 805-822.
Huang, W.-F. and M.-C. Yang, Electrosynthesis of Adiponitrile with a Rotating Cylindrical Electrode. Industrial & Engineering Chemistry Research, 2021. 60(36): p. 13180-13190.