| 研究生: |
郭家銘 Kuo, Chia-Ming |
|---|---|
| 論文名稱: |
氣壓輔助接觸轉印與遮罩植入微影技術製作高頻表面聲波元件 Air Pressure Assisted Contact-Transfer and Mask Embedded Lithography for Fabrication of High Frequency Surface Acoustic Wave (SAW) Devices |
| 指導教授: |
李永春
Lee, Yung-Chun |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系碩士在職專班 Department of Mechanical Engineering (on the job class) |
| 論文出版年: | 2010 |
| 畢業學年度: | 98 |
| 語文別: | 中文 |
| 論文頁數: | 68 |
| 中文關鍵詞: | 氣壓輔助接觸轉印 、高頻表面聲波元件 、模態耦合理論 、奈米壓印 、壓電基板 、網路分析儀 |
| 外文關鍵詞: | Air Pressure Assisted Contact-Transfer and Mask Embedded Lithography, high frequency SAW devices, COM, nanoimprinting, piezoelectric substrate, network analyzer |
| 相關次數: | 點閱:144 下載:7 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文主要探討如何利用氣壓輔助接觸轉印與遮罩植入式微影技術(Air Pressure Assisted Contact-Transfer and Mask Embedded Lithography) 製作商業化的高頻表面聲波 (SAW) 元件。
理論部份採用B.P. Abbott所提出的模態耦合理論作為高頻表面聲波元件的表現模擬方法,其中主要的參數為波傳損失、反射係數、電性轉換係數、金屬薄膜電阻、單位長度電容及表面波速。
接觸轉印法主要是用來製作微機電製程中所需要的遮罩 (Mask),而氣壓輔助法是利用氣壓可以均勻的施力於物體的表面上,即使是不平的表面,因此可以得到較佳的轉印效果,以厚度約50 nm的鉻金屬為遮罩,直接以氣壓輔助奈米壓印機轉印到已旋塗聚甲基丙烯酸甲脂樹脂(PMMA) 的壓電基板上,接著再利用反應式離子蝕刻機 (RIE),以氧電漿蝕刻無覆鉻層的部份,再以電子束蒸鍍機鍍上作為電極用的鋁層,最後再以丙酮舉離 (lift off) 剩餘之PMMA及鉻層,便完成所需的高頻表面聲波元件。此外本文亦將討論模仁重覆使用之議題。
以向量式網路分析儀量測所製作之高頻表面聲波元件,並與理論求得之結果作比較。
This paper will discuss how to use “Air Pressure Assisted Contact-Transfer and Mask Embedded Lithography” method for fabrication of high frequency surface acoustic wave (SAW) devices that is already used in some communication module.
We will analyze the SAW devices by using “Coupling-of-Modes” (COM) theory that is presented by B.P. Abbott et al. The 6 major parameters: propagation loss, reflection coefficient, transduction coefficient, thin film resistance, distributed finger capacitance, and the surface acoustic wave velocity will be discussed.
The contact-transfer imprinting method is newly developed to fabricate the metal mask layer of the MEMS process in recent years. And the air assisted contact-transfer imprinting method will lead to a more stable and better result due to its uniform pressure while imprinting. First, we use 50 nm Cr layer for the mask. Then we use O2 plasma to etch the PMMA layer. Finally, we get the SAW devices by using acetone to lift off.
We will demo how to use network analyzer to verify the SAW devices and imprinting mold re-use method in this paper.
[1] 王誌麟,零組件雜誌,西元2009年8月號
[2] L. Rayleigh, “On Waves Propagating along the Plane Surface of an Elastic Solid,” Pro. London Math. Soc., Vol. 7, pp. 4-11, 1885.
[3] R.M. White and F.W. Voltmer, ‘Direct Piezoelectric Coupling to Surface Elastic Waves,” Appl. Phys. Lett., Vol. 17, pp. 314-316, 1965.
[4] R.H. Tancrell and M.G. Holland, “Acoustic Surface Wave Filters,” Proc. IEEE, Vol. 59, pp.393-409, 1971
[5] C.S. Hartmann, D.T. Bell, Jr. and R.C. Rosenfeld, “Impulse response model design of acoustic surface-wave filters,” IEEE Trans. On Microwave Theory and Techniques, Vol. MTT-21, pp. 162-175,1973.
[6] W.P. Mason, Electromechanical Transducers and Wave Filters, van Nostrand Company, 2nd Edition, 1948..
[7] W.P. Mason, Physical Acoustics, Vol. 1A, Academic Press, 1964.
[8] W.R. Smith, H.M. Gerard, J.H. Collins, T.M. Reeder and H.J. Show, “Analysis of Interdigital Surface Wave Transducers by Use of an Equivalent Circuit Model,” IEEE Trans. On Microwave Theory and Techniques, Vol. MTT-17, pp. 856-864, 1969.
[9] W.R. Smith, “Experimental Distinction Between Crossed-Field and In-Line Three-Port Circuit Models for Interdigital Transducers,” IEEE Trans. On Microwave Theory and Techniques, pp. 960-964, 1974.
[10] P.S. Cross and R.V. Schmidt, “Coupled Surface-Acoustic-Wave Resonators,” Bell System Tech. Journal, Vol. 56, pp. 1447-1482, 1977.
[11] P.V. Wright, “A new generalized modeling of SAW transducers and gratings,” Pro. 43th Frequency Control Symp., pp. 596-605, 1989.
[12] B.P. Abbott, C.S. Hartmann and D.C. Malocha, “A Coupling-of-Modes Analysis of Chirped Transducers Containing Reflective Electrode Geometries,”IEEE Ultrason. Symp., pp.129-134, 1989.
[13] B.P. Abbott, “A Coupling-of-Modes Model for SAW Transducers with Arbitrary Reflectivity Weighting,” the Department of Electrical Engineering at University of Central Florida Orlando, Florida, 1989.
[14] Stephen Y. Chou, Peter R. Krauss, and Preston J. Renstrom, “Imprint of sub-25 nm vias and trenches in polymers,” Appl. Phys. Lett. 67(21), 1995.
[15] C.G. Willson, et al., “Step and Flash Imprint Lithography: A New Approach to High-Resolution Patterning,” Proc. SPIE, 3676(I):379(1999)
[16] Byron D. Gates, Qiaobing Xu, Michael Stewart, Declan Ryan, C.G. Willson, and G.M. Whitesides, “New Approaches to Nanofabrication: Molding, Printing, and Other Techniques,” Chem. Rev105, 1171-1196, 2005.
[17] Y. Xia and G. M. Whitesides, Annu. Rev. Mater. Sci. 28, 153(1998)
[18] G.M. Whitesides, et al., ADVANCED MATERIALS, 8(12), 1015(1996)
[19] Stephen Y. Chou, Chris Keimel & Jian Gu, Nature, Vol. 417(20), pp. 835-837, 2002
[20] C.H. Chen, C.P.Liu, Y.C. Lee, F.B. Hsiao, C.Y. Chiu, M.H. Chung and M.H. Chiang, “IR Laser-Assisted Micro/Nano Imprinting” Journal of Micromechanics and Microengineering, Vol. 16, pp. 1463-1467, 2006.
[21] Y.C. Lee and C.Y. Chiu, “A New Micro/Nano-Lithography Based on Contact Transfer of Thin Film and Mask Embedded Etching” Journal of Advanced materials, Submitted date”
[22] C.K. Campell, Surface Acoustic Wave Devices for Mobile and Wireless Communications, New York:Academic Press, 1998.
[23] Ken-ya Hashimoto, Surface Acoustic Wave Devices in Telecommunications: modeling and simulation, Springer, 2000.
[24] D.P. Morgan, Surface-wave devices for signal processing, Elsevier, 1985.
[25] T. Thorvaldsson, “Analysis of The Natural Single Phase Unidirectional SAW Transducer,” IEEE Ultrason. Symp.,pp. 911-96, 1989.
[26] M. Beck, M. Graczyk, I. Maximov, E.L. Sarwe, T.G.I. Ling, M. Keilb, and L. Montelius, “Improving stamps for 10 nm level wafer scale nanoimprint lithography”, Microelectronic Engineering 61-62, pp. 441-448