| 研究生: |
賴錦文 Lai, Chin-Wen |
|---|---|
| 論文名稱: |
晶界破裂對粉碎礦石粒度分佈及品位變化之影響研究 Effects of grain boundary fracturing on particle size distributions and grade variations in comminuted ores |
| 指導教授: |
溫紹炳
Wen, Shaw-Bing |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 資源工程學系 Department of Resources Engineering |
| 論文出版年: | 2003 |
| 畢業學年度: | 91 |
| 語文別: | 中文 |
| 論文頁數: | 112 |
| 中文關鍵詞: | 品位變化 、暴露模式 、晶界破裂 |
| 外文關鍵詞: | exposure model, intergranular fracturing, grade variation |
| 相關次數: | 點閱:40 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
晶界破裂會對粉碎後礦石的粒度分佈與品位變化產生影響,並且是造成粒度與品位異常分佈的主要原因,這是早在1939年的高汀 「選礦學」教科書中所明確指出的。歷經六十餘年,卻仍然沒有數量化的研究出現。本論文就是要將礦石粉碎時,晶界破裂的比例P作為量化之基礎,應用以往發展出來的暴露與單離模式,導出粉碎礦石的粒度及品位分佈的量化數值,並且經由實驗結果驗證,證明這個量化計算模式的正確性。
本研究是根據徐與溫(1995-1998)的單離模式以及暴露模式作為基礎,來進行礦石粉碎後的粒度分佈與品位變化的探討。驗證理論的推演,是以顎碎機進行粉碎礦石,得到的粉碎礦石產品進行篩分析以獲得顆粒大小分佈,每個篩徑範圍進行品位分析,以得到不同顆粒大小的品位數值。同時分析獲得樣品的組成、礦物晶粒大小分佈,配合不同程度的晶界破裂係數,來推算粉碎礦石中有價礦物之品位變化,和實驗分析的結果比對驗證,最後得到理論推演正確與否之結論。驗證樣品有不銹鋼電爐渣、碳化矽廢磨石與含磁鐵礦的滑石片岩等,都是國內資源回收項目的原料。
從粉碎實驗得到粉碎礦石的顆粒大小分佈、各粒徑區間的品位、晶粒大小分佈等數據,應用暴露模式的公式,來推算粉碎後爐渣、磨石與滑石片岩中的有價礦物之品位變化,發現在特定的晶界破裂係數之下,實驗分析的粒度分佈及品位變化都與經由公式推算的結果十分吻合,本論文推演的模式應用在這些物質的粉碎產品粒度分佈及品位變化應是獲得實證。經過計算得到的爐渣晶界破裂係數為0.30,碳化硅磨石的晶界破裂係數為0.35,滑石片岩的晶界破裂係數為0.70。採用不同的顎式碎礦機閉口間隙,將會造成有價礦物不同的品位變化,也可以據此訂定出較為有利於後續分選作業的粉碎作業條件。
本研究推導了一個品位計算模式,來估算粉碎礦石中的有價礦物的品位隨著顆粒大小而變化的狀況。由於可以實際測得粉碎礦石的粒度分佈、結晶粒度分佈、品位,並以晶界破裂係數算出品位變化值,因此可以應用在粉碎工程中的產品品質控管的流程中,作為提升粉碎作業效率的一種有效評估工具。確實改善了目前過於龐雜繁複的估算粉碎產品之品位變化的方式,具有簡便且真正實用的價值,這也是本研究最大的貢獻。
Grain boundary fracturing, proposed by Gaudin in 1939 in his textbook “Principles of mineral dressing”, is a major influencing factor that makes the abnormal distribution in the particle size and the grade of comminuted ores. But there is no other quantified research presented for about 60 years since then. This study is based on the quantified factor, intergranular fracturing factor P, in comminuted ores and uses the exposure model and the liberation model to infer the quantified values of particle size distribution and grade distribution of crushed ores. By the experimental results, the accuracy of the quantified calculation model based on the models is proved.
This study is based on the exposure model and liberation model of Hsih and Wen (1995-1998) that are utilized to study the abnormal distribution of particle size distributoin and grade variation in comminuted ores. Experiment is applied to put to the proof of the inferred model. The experimental procedure is conducted by jaw crushing and the comminuted ores sieved to gain the particle size distribution and analyzes the grade distribution in each size interval. The components and grain size distribution of samples are also obtained by experimental analysis. With different intergranular fracturing factors put into the model to calculate the grade variation of valuables in comminuted ores, the results of right or wrong for the model inference is obtained. Samples utilized to test are arc steel slag, waste SiC grinding stone and talc schist that are recycling material in Taiwan.
Particle size distribution, grain size distribution and grade variation in each size interval, obtained from experimental and calculation, are utilized in the formulae of grade variations of the exposure model to compute the variation of grade in valuables of slag, grinding stone and talc schist. It’s found that in a specific value of intergranular fracturing factor the calculated results of formulae are matched well with experimental results. The inferred model in this study puts to proof by the good coincidence with the experimental data. After the calculation, the intergranular fracturing factor, P, in slag is 0.30, in grinding stone is 0.35 and in talc schist is 0.70. Different closed sets at a jaw crusher make the variations of grade in valuables and the comparatively better condition of comminution and liberation can be chosen.
This research derives a useful calculational model to evaluate the variations of grade at different size ranges in comminuted ores. The evaluated method applied in the quality control of comminuted products promotes the efficiency of comminution procedure. It indeed improves the numerous and jumbled calculation works conducted by other researchers. The grade variation model is proved to be simple and practical and it is also the greatest contribution of this study.
Andres, U. and Bialecki, R., 1986. Liberation of mineral constituents by high-voltage pulses. Powder Technol., 48: 269-277.
Andres, U., 1996. Dielectric seperation of minerals. J. Electrostatics, 37: 227-248.
Andrews, J. R. G. and Mika, T. S., 1975. Comminution of a heterogenerous materal: development of a model for liberation phenomena. Proc. 11th Int. Mineral Processing Congress, Cagliari, 59-88.
Austin, L. G., 1971-1972. A review: Introduction to the mathematical description of grinding as a rate process. Powder Technol., 5: 1-17.
Austin, L.G., Shoji, K., Everrett, M.D., 1973. An explanation of abnormal breakage of large particle sizes in laboratory mills. Powder Technol., 7: 3-7.
Austin, L.G., Trimarchi, T., Weymont, N.P., 1977. An analysis of some cases of non-first-order breakage rates. Powder Technol., 17: 109-113.
Austin, L. G. and Bagga, P., 1981. An analysis of fine dry grinding in ball mills, Powder Technol., 28: 83-90.
Austin, L. G., Bagga, P. and Celik, M., 1981. Breakage properties of some materials in a laboratory ball mill. Powder Technol., 28: 235-241.
Austin, L. G., 1984. Concepts in process design of mills. Mining Eng., 628-635.
Austin, L. G., Kalligeris-Skentzos, A. and Woodburn, E.T., 1994. Ash liberation in fine grinding of a British coal. Powder Technol., 80: 147-158.
Austin, L.G., 2002. A treatment of impact breakage of particles. Powder Technol., 126: 85-90.
Bagga, P. S. and Lucki, P. T., 1983. A Monte-Carlo simulation of liberation. In: Y. J. Wang and R. L. Sandford (Editiors), Proc. 1st Conf. Use of Comp. Coal Ind. AIME, New York, N. Y., 247-250.
Barbery, G., 1985. Mineral liberation determination using stereological methods: a review of concepts and problems. In: W. C. Park and D. M. Hausen and R. D. Hagni (Editors), Applied Mineralogy. AIME, New York, N. Y., 171-190.
Barbery, G. and Leroux, D., 1988. Prediction of particle composition distribution after fragmentation of heterogeneous material. Int. J. Miner. Process., 22: 9-24.
Barbery, G., 1991. Mineral liberation. Les editions GB.
Barbery, G., 1992. Liberation 1, 2, 3. Theoretical analysis of the effect of space dimension on mineral liberation by size reduction. Minerals Eng., 5(2): 123-141.
Bérubé, M.A., Marchand, J.C., 1984. Evolution of the mineral liberation characteristics of an iron ore undergoing grinding. Int. J. Miner. Proc., 13: 223-237.
Bole, J., Lin, C. L. and Miller, J. D., 1993. Experimental verification of the PARGEN simulator for liberation analysis. Int. J. Min. Proc., 37: 209-221.
Bonifazi, G. and Massacci, P., 1995. Ore liberation modeeling by minerals topological evaluation. Minerals Eng., 8(6): 649-658.
Bown, R. W., 1966. Energy distribution in pulverizing. Trans. IMM Sec. C, 75: C173-C180.
Bown, R. W., 1966. Measurements of the energy required to break coal particles under free crushing conditions. Trans. Instn. Min. Metall. (Sect. C: Mineral Process. Extr.Metall.), 75: C163-C172.
Brachthauser, M. and Kellerwessel, H., 1988. High pressure comminution with roller presses in mineral processing. XVI International Mineral Processing Congress, 209-219.
Bradt, R. C., Lin, C. L., Miller, J. D. and Chi, G., 1995. Interfacial fracture of multiphase particles and its influence on liberation phenomena. Minerals Eng., 8(4/5): 359-366.
Brown, W. K. and Wohletz, K. H., 1995. Deriation of the Weibull distribution based on physical principles and its connection to the Rosin-Rammler and log-normal distributions. J. Appl. Phys. 78(4): 2758-2763.
Davy, P. J., 1984. Probability models for liberation. J. Appl. Probab., 21: 260-269.
Denev, S. I. and Stoitsova, R. V., 1988. Effect of mechanical stress on structure alterations of minerals. XVI International Mineral Processing Congress, 628-650.
Djamarani, K. M. and Clark, I. M., 1997. Characterization of particle size based on fine and coarse fractions. Powder Technol., 93: 101-108.
Egmond, J. W. and Meloy, T. P., 1989. Lockness profile for non-homogeneous liberation of systemetrical particles. Powder Technol., 58: 11-15.
Fandrich, R. G., Bearman, R. A., Boland, J. and Lim, W., 1997. Mineral liberation by particle bed breakage. Minerals Eng., 10 (2): 175-187.
Fandrich, R.G. 1998. Mineral liberation through confined particle bed breakage. PhD Thesis of Department of Mining, Minerals and Material Engineering, University of Queensland.
Ferrara, G., Bevilacqua, P. and Meloy, T. P., 1993. Liberation of voids by comminution— its influence on apparent density of porous materials. Powder Technol., 76: 89-94.
Finlayson, R. M., and Hulbert, D. G., 1980. The simulation of the behavior of individual minerals in closed circuit grinding. Proc. 3rd IFAC Symp., Montreal, Ont., 323-332.
Fuerstenau, D. W., Kapur, P. C. and Gutsche, O., 1993. Comminution of single particles in a rigidly-mounted roll mill. Part 1: Mill torque model and energy investment. Powder Technol., 76: 253-262.
Gardner, R. P. and Sukanjnajtee, K., 1972. A combined tracer and back-calculation method for determining particulate breakage functions in ball milling. Part I. Rationale and description of the proposed method., Powder Technol., 6: 65-83.
Gardner, R. P. and Rogers R. S., 1975. A two-component mechanistic approach for comminution of material that exhibits heterogeneous breakage characteristics. Powder Technol., 12: 247-258.
Gardner, R. P. and Austin, L.G., 1975. The application of the first-order grinding law to particles having a distribution of strengths. Powder Technol., 12: 65-69.
Gaudin, A.M. 1926. An investigation of crushing phenomena. Trans. SME-AIME, 73: 253-316.
Gaudin, A.M., 1939. Principles of mineral dressing. McGraw-Hill, New York.
Gay, S. L., 1999. Numerical verification of a non-preferential-breakage liberation model. Int. J. Miner. Process., 57: 125-134.
Grady, D. E., 1981. Fragmentation of solids under impulsive stress loading. J. Geophysical Research, 86(B2): 1047-1054.
Gupta, V. K., Hodouin, D., Berube, M. A. and Everell, M. D., 1981. The estimation of rate and breakage distribution parameters from batch grinding data for a complex pyritic ore using a back-calculation method., Powder Technol., 28: 97-106.
Gutsche, O., D. W., Kapur and Fuerstenau, P. C., 1993. Comminution of single particles in a rigidly-mounted roll mill. Part 2: Product size distributionb and energy utilization. Powder Technol., 76: 263-270.
Harris, C. C., 1966. On the role of energy in comminution: a review of physical and mathematical principles. Trans. IMM Sec. C, 75: C37-C56.
Herst, J. A. and Fuerstenau, D. W. 1972. Inflence of mill speed and ball loading on the parameters of the batch grinding equation. AIME, Transactions, 252: 169-176.
Horst, W. E. and Freeh, E. J., 1972. Mathematical modeling of a continuous comminution process. Trans. AIME, 252: 160-167.
Hsih, C. S. and Wen, S. B., 1994. An extension of Gaudin’s liberation model for quantitatively representing the effect of detachment in liberation. Int. J. Miner.Process., 42: 15-35.
Hsih, C.S., Wen, S.B. and Kuan, C.C. 1995. An exposure model for valuable components in comminuted particles. Int. J. Miner. Process., 43: 145-165.
Hsih, C.S., Wen, S.B. and Kuan, C.C., 1995. An exposure model for valuable components in comminuted particles. Int. J. Miner. Process., 43: 145-165.
Kapur, P. C., Gutsche, O. and Fuerstenau, D. W., 1993. Comminution of single particles in a rigidly-mounted roll mill. Part 3: Particle interaction and energy dissipation. Powder Technol., 76: 271-276.
Kawatra, S. K. and Eisele, T. C., 1988. Rheology effects in grinding circuits. XVI International Mineral Processing Congress, 195-207.
Kelly, E. G. and Spottiswood, D. J., 1982. Introduction to mineral processing’. John Wiley & Sons, N.Y.
King, R. P., 1979. A model for the quantitative estimation of mineral liberation by grinding. Int. J. Miner. Process., 6: 207-220.
King, R. P., 1990. Calculation of the liberation spectrum in products produced in continuous milling circuits. Proc. 7th European symposium on comminution, Ljubljana, 2: 429-444.
King, R. P. and Schneider, C. L., 1998. Stereological correction of linear grade distributions for mineral liberation. Powder Technol., 98: 21-37.
King, R. P. and Schneider, C. L. 1998. Mineral liberation and the batch comminution equation. Minerals Eng., 11(12): 1143-1160.
Klimpel, R. R. and Austin, L. G., 1983. A preliminary model of liberation from a binary system. Powder Technol. 34: 121-130.
Klimpel, R. R., 1984. Some practical approaches to analylizing liberation from a binary system. In: Petruk, W. (ed.): Proc. Mineralogy II, SME-AIME, C220-228.
Klotz, K. and Schubert, H., 1982. Crushing of single irregularly shaped particles by compression: size distribution of progeny particles. Powder Technol., 32: 129-137.
L. C. Woollacott and M. Valenta, 1996. Use of synthetic ore particles to test a transformation function in liberation analysis. Minerals Eng., 9 (10): 1017-1032.
Lai, C. W., Wen, S. B. and Tsai, M. S. 1999. An exposure model for rare components in comminutedparticles and its applications in hydrometallurgy and waste recycling. GME ’99, Proceedings of Global Conference on Environment Control in Mining and Metallurgy, 463-469.
Laslett, G. M., 1990. Graphical assessment of a random breakage model for mineral liberation. Powder Technol., 60: 83-97.
Ledchonski, K., 1979. Sieve analysis, the Cinderella of particle size analysis methods? Powder Technol., 24: 115-124.
Lim, I. L., Voigt, W. and Weller, K. R., 1996. Product size distribution and energy expenditure in grinding minerals and ores in high pressure rolls. Int. J. Miner. Process., 44-45: 539-559.
Lin, C. L. and Miller, J. D. 1996. Cone beam X-ray microtomography for three-dimensional liberation analysis in the 21st century. Int. J. Miner. Process., 47: 61-73.
Lin, D., Gomez, C. O. and Finch, J. A., 1994. Test of Barbery’s liberation correction procedure. Trans. IMM Sec. C, 103: C91-96.
Lorenzen, L. and van Deventer, J. S. J., 1994. The interrelationship between mineral liberation and leaching behavior. Int. J. Miner. Process., 41: 1-15.
Lowrison, G.C., 1974. Crushing and grinding. Butterworth & Co., London.
Lyman, G. J., 1995. Method for interpolation of 2-D histogram data: application to mineral liberation data. Powder Technol., 83: 133-138.
Lynch, A. J., 1977. Mineral crushing and grinding circuits. Elsevier Scientific Publishing Company, Amsterdam.
Malvik, T., 1988. Relations between mineralogical texture and comminution characteristics for rocks and ores. XVI International Mineral Processing Congress, 257-270.
Meloy, T. P., 1988. Locked particles-compositional variations of large particles. XVI International Mineral Processing Congress, 1803-1809.
Meloy, T.P., 1984. Liberation theory— eight, modern, usable theorems. Int. J. Miner. Process.,13: 313-324.
Meloy, T. P. and Gotoh, K., 1985. Liberation in a homogeneous two-phase ore. Int. J. Miner. Process., 14: 45-55.
Meloy, T. P., Preti, U. and Ferrara, G., 1987. Liberation— volume and mass lockedness profiles derived—theoretical and practical conclusions. Int. J. Miner. Process., 20: 17-34.
Napier-Munn, T. J., 1998. Analysing plant trials by comparing recovery-grade regression lines. Minerals. Eng., 11(10): 949-958.
Narayanan, S. S., 1988. Single particle breakage tests: an emerging tool for modelling industrial comminution process. XVI International Mineral Processing Congress, 1811-1822.
Peterson, T. W. and Scotto, M. V., 1985. Comparison of comminution data with analytical solutions of the fragmentation equation. Powder Technol., 45: 87-93.
Prasher, L. L., 1987. Crushing and grinding process handbook. John Wiley & Sons, N.Y.
Revnivtsev, V. I., Kapralov, YE. P., Finkelstin, G. A., Zarogatsky, L. P., Ivanov, N. A., Blekhman, I. I. and Ivanov, B. G., 1984. Selective liberation of minerals in inertial cone crushers. Powder Technol. 38: 195-203.
Schaap, W., 1979. Illustrated liberation-flotation recovery model for a disseminated mineral in low-grade ore. Trans. IMM Sec. C, 88: C220-228.
Schneider, C. W., 1995. Measurement and calculation of liberation in continuous milling circuits. PhD Thesis of Department of Metallurgical Engineering, University of Utah.
Shoji, K., Lohrasb, S. and Austin, L. G., 1980. The variation of breakage parameters with ball and powder loading in dry ball Milling. Powder Technol., 25: 109-114.
Somasundaran, P., 1984. Role of surface phenomena in the beneficiation of fine particles. Mining Eng., 1177-1186.
Steiner, H. J., 1975. Liberation kinetics in grinding operations. Proc.11th the Int. Mineral Processing Congr. Cagliari, 3: 35-58.
Gay, S. L., 1999. Numerical verification of a non-preferential breakage model. Int. J. Miner. Process., 57: 125-134.
Targgart, A. F., 1945. Handbook of mineral dressing. John Wiley & Sons, N.Y.
Tarjan, G., 1981. Mineral processing. Akademiai Kiado, Budapest.
Tomas, J., Schreier, M., Gröger, Torsten and Ehlers, S., 1999. Impact crushing of concrete for liberation and recycling. Powder Technol., 105: 39-51.
Wei, X. and Gay, S., 1999. Liberation modelling using a dispersion equation. Minerals Eng., 12(2): 219-227.
Wen, S. B., Hsih, C. S. and Kuan, C.C., 1995. The application of a mineral exposure model in a gold leaching operation. Int. J.Miner. Process., 46: 215-230.
Wen, S.B., Lai, C. W., Cheng, S. C. and Haung, C. Y., 1998. Comminution of air-cooled slag for recovery of metal grains. Transactions of the institution of mining and metallurgy, Trans. IMM Sec. C, 107: C146-150.
Wen, S.B., Yang, C.S. and Hsih, C.S., 1998. The abnormal size distribution of comminuted heterogeneous ores due to detachment of grain boundaries fracturing. Int. J. Miner. Process., 53: 183-200.
Wiegel, R.L 1975. Liberation in magnetite iron formation. AIME, Trans., 258: 247-256.
Wiegel, R.L. 1976. Integrated size reduction-mineral liberation model. AIME, Trans., 260: 147-152.
Wiegel, R.L. and Li, K. 1967. A random model for mineral liberation by size reduction. AIME, Transactions, 179-189.
Wiegel, R.L., 1975. Liberation in magnetite iron formation. Trans. SME-AIME, 258: 247-256.
Wellborn, W. W., 1994. Abrasives. Industrial minerals and rocks, 6th edition, 67-79.
Wills, B. A., Akinson, K., 1993. Some observation on the fracture and liberation of mineral assemblies. Minerals Eng., 6: 697-706.
王少儒等譯,日本神保原二等著, 1985,“粉碎”,中國建築工業出版社。
王耀華, 1992, “選礦廠設計”,冶金工業出版社。
吳承勖碩士論文,1993,”石英礦物的FT-IR光譜與機械性質分析”,國立成功大學資源工程研究所,中華民國台灣台南市。
李文鍾,1970,”選礦學”,世界書局。
李瑞欽碩士論文,1999,”蛇紋岩之微結構與粉碎粒度分佈特性之研究”,國立成功大學資源工程研究所,中華民國台灣台南市。
官志誠碩士論文,1992,”粉碎程序中的暴露模式探討及應用研究”,國立成功大學礦冶及材料科學研究所,中華民國台灣台南市。
林煜堂碩士論文,1992,“石英岩的微細粉碎性質研究”, 國立成功大學資源工程研究所,中華民國台灣台南市。
徐堯山碩士論文,1981,“台灣白色結晶石灰石之研磨性質與其顯維結構研究”,國立成功大學資源工程研究所,中華民國台灣台南市。
徐錦上、溫紹炳,1995,“以量化之單離係數改進高汀解離模式之研究—應用於角閃石片岩中之石榴子石及雲母片岩中之黃鐵礦之範例”, 礦冶,39(2): 62-75。
徐錦上博士論文,1995,”非均質岩石於粉碎程序中之單離與暴露模式研究”,國立成功大學礦冶及材料科學研究所,中華民國台灣台南市。
翁林廷彬,1991,”廢棄物之回收再利用”,礦業技術,Vol.29(2): 126-134。
張少明等, 1994, “粉體工程”,中國建材工業出版社。
楊家欣碩士論文,1997,“晶界單離因子應用於花崗岩單離現象及破碎行為模式之研究”,國立成功大學資源工程研究所,中華民國台灣台南市。
溫紹炳,1991, “微粒粉碎技術”,陶業, 3-16.
溫紹炳、徐錦上、官志誠,1996,“粉碎程序中的暴露模式探討—應用於雲母片岩中之黃鐵礦及金礦(浸漬)之範例”,礦冶,40(1): 65-78。
賴維志碩士論文,1996,”不銹鋼電爐渣處理利用之研究”,國立成功大學資源工程研究所,中華民國台灣台南市。
賴錦文、溫紹炳,1996,”脆性材料的加工用磨料”陶業雜誌,第十五卷,第二期, 5-12。
賴錦文、溫紹炳,1999,“晶界破裂對粉碎礦石粒度分佈之影響”,資源與環境學術研討會,花蓮, 135-149。
賴錦文、溫紹炳,2001,“以暴露單離模式探討粉碎礦石品位之變化”,礦冶,45(1): 71-81。
賴錦文、溫紹炳,2002,“粉碎礦石中有價礦物的品位變化”,資源與環境學術研討會,花蓮, 221-234。
謝宗憲碩士論文,2000,“以電磁感應促進爐渣中金屬球在粉碎作業之單離研究”,國立成功大學資源工程研究所,中華民國台灣台南市。