| 研究生: |
陳崇銘 Chen, Chung-Ming |
|---|---|
| 論文名稱: |
Ka/K頻帶寬頻相移器與衰減器之研製 Implementation of Broadband Phase Shifter & Attenuator for Ka/K-band Applications |
| 指導教授: |
王永和
Wang, Yeong-Her |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系碩士在職專班 Department of Electrical Engineering (on the job class) |
| 論文出版年: | 2012 |
| 畢業學年度: | 100 |
| 語文別: | 中文 |
| 論文頁數: | 84 |
| 中文關鍵詞: | 寬頻 、切換式 、相移器 、反射式 、衰減器 、藍吉耦合器 、pHEMT |
| 外文關鍵詞: | broadband, switched-line, phase shifter, reflection type, attenuator, Lange coupler, pHEMT |
| 相關次數: | 點閱:104 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文主要在研製射頻微波電路的Ka/k 頻帶之相位移器及衰減器。在目前的研究,提出一個ka頻帶的180°寬頻切換式相移器,該電路應用兩個藍吉耦合器並設計非共振的開關,另外改變電晶體佈局減低寄生效應來增加電晶體隔離度及金屬線耦合效應,使用藍吉耦合器使該電路具有寬頻、低插入損耗變異、低相移變異及好的折返損耗,本電路中心頻率為35GHz,利用電晶體做為開關來控制相位輸出0°或180°,在操作頻寬30GHz~37GHz之間,插入損耗為7dB~8dB,插入損耗變異在1dB以下,操作頻寬為21%。在30GHz~40GHz之間,輸入折返損耗及輸出折返損耗大於18dB。當電晶體全部關閉,隔離度大於25dB。核心晶片面積為0.914mm2,使用的為全訊0.25μm pHEMT製程。
本論文也提出的電路為一個k頻帶寬頻反射式可調衰減器,採用寬頻的藍吉耦合器架構,反射式終端電路為兩組二極體做可變電阻再串連電阻元件,具有簡易的電路匹配架構,只需要一個直流控制電壓源。操作在中心頻率26GHz,在頻寬20-31GHz之間,可調衰減範圍大於15dB並具有低的折返損耗變動,操作頻寬大於42%的優異表現,核心晶片面積為0.376mm2,使用的製程為WIN 0.15μm pHEMT。
Design consideration and performance of a Ka/K-band monolithic phase shifter and attenuator are presented. In the current study, a Lange coupler was used to maintain the bandwidth of the phase shifter, and a new field-effect transistor layout was designed to reduce the parasitic effect and enhance the isolation of the switch. Using the Lange coupler technique, the 180° phase shifter gained advantages in terms of broadband, low insertion loss variation, low phase shift variation, and good return loss. Measured results demonstrate an insertion loss of 7dB to 8 dB and an insertion loss variation of less than 1 dB, with the return losses better than 18 dB over the 30GHz to 37 GHz RF bandwidth. These results are in good agreement with the simulated results. The chip dimension is 0.914mm2 through the Transcom 0.25μm pHEMT process.
A broadband reflection type variable attenuator at K-band is also presented. The attenuator only consists of one Lange coupler, two sets of diode series resistance components and a simple matching network. It only has one dc control bit. The center frequency is operated at 26 GHz. The measured attenuation dynamic range is more than 15 dB and has the low return loss variation. The operating bandwidth is over the 20 GHz to 31 GHz RF bandwidth (42%). The chip size is 0.376mm2 using the WIN 0.15μm pHEMT process.
第一章
[1]J. P. Starski, “Optimization of the matching network for a hybrid coupler phase shifter,” IEEE Trans. Microwave Theory Tech., vol. MTT-25, pp. 662–666, Aug. 1977.
[2]M. Schindler, Y. Ayasli, A. Morris, and L. Hanes, “Monolithic 6–18 GHz 3-bit phase shifter,” in IEEE GaAs IC Symp. Dig., 1985, pp. 129–132.
[3]D. C. Boire, J. E. Dejenford, and M. Cohn, “A 4.5 to 18 GHz phase shifter,” in IEEE MTT-S Int. Microwave Symp. Dig., 1985, pp. 601–604.
[4]D. C. Boire, G. St. Onge, C. Barratt, G. B. Norris, and A. Moysenko,“4 : 1 bandwidth digital five bit MMIC phase shifters,” in IEEE Microwave Millimeter-Wave Monolithic Circuits Symp. Dig., 1989, pp. 69–73.
[5]R. V. Garver, “Broad-band diode phase shifters,” IEEE Trans. Microwave Theory Tech., vol. MTT-20, pp. 314–323, May 1972.
[6]F. Ellinger, R. Vogt, and W. Bachtold, “Calibratable adaptive antenna combiner at 5.2 GHz with high yield for laptop interface card,” IEEE Trans. Microw. Theory Tech., vol. 48, no. 12, pp. 2721–2720, Dec. 2000.
[7]B. A. Kopp, M. Borkowski, and G. Jerinic, “Transmit/receive modules,” IEEE Trans. Microw. Theory Tech., vol. 50, no. 3, pp. 827–834, Mar. 2002.
[8]M. Hangai, H. Asao, M. Hieda, M. Yamaguchi, and M. Miyazaki, “Amplitude/phase temperature compensation attenuators with variable-Q FET resonators,” IEEE Trans. Microw. Theory Tech., vol. 56, no. 12, pp. 3058–3065, Dec. 2008.
第二章
[1]R. V. GARDNER, “Broad-Band Diode Phase Shifters,” IEEE Trans. Microw. Theory Tech., vol. MTT-20, no. 5, pp. 314-323, MAY 1972.
[2]B. H. Ku and S. Hong, “6-bit CMOS digital attenuators with low phase variations for X-band phased-array systems,” IEEE Trans. Microw. Theory Tech., vol. 58, no. 7, pp. 1651-1663, July 2010.
第三章
[1]M. Tsuji, T. Nishikawa, K.Wakino, and T. Kitazawa, “Bi-directionally fed phased-array antenna downsized with variable impedance phase shifter for ISM band,” IEEE Trans. Microw. Theory Tech., vol. 54, no.7, pp. 2962–2969, Jul. 2006.
[2]R.V. Garver, “360° varactor linear phase modulator,” IEEE Trans. Microw.Theory Tech., vol. MTT-17, no. 3, pp. 137–147, Mar. 1969.
[3]B.T. Henoch and P. Tamm, “A 360° reflection-type diode phase modulator,”IEEE Trans. Microw. Theory Tech., vol. MTT-19, no. 1, pp.103–105, Jan. 1971.
[4]L. R. Whicker, “Forward-special issue on microwave control devices for array antenna systems,” IEEE Trans. Microw. Theory Tech., vol.MTT-22, no. 6, pp. 589–590, Jun. 1974.
[5]K. Miyaguchi, M. Hieda, K. Nakahara, H. Kurusu, M. Nii, M. Kasahara,T. Takagi, and S. Urasaki, “An ultra-broad-band reflection-type phase shifter MMIC with series and parallel LC circuits,” IEEE Trans. Microw.Theory Tech., vol. 49, no. 12, pp. 2446–2452, Dec. 2001.
[6]K. Maruhashi, H. Mizutani, and K. Ohata, “Design and performance of a Ka-band monolithic phase shifter utilizing nonresonant FET switches,” IEEE Trans. Microw. Theory Tech., vol. 48, no. 8, pp.1313–1317, Aug. 2000.
[7]Kang, D.-W., Lee, H.D., Kim, C.-H., and Hong, S.: ‘Ku-band MMIC phase shifter using a parallel resonator with 0.18-μm CMOS technology’, IEEE Trans. Microw. Theory Tech., 2006, 54, (1),pp. 294–301
[8]M. Kim, J. Yang, and K. Yang, “Switched transmission-line type Q-band 4-bit MMIC phase shifter using InGaAs PIN diodes,” Electron. Lett., vol. 46, no. 3, pp. 225–226, Feb. 2010.
[9]V. E. Dunn, N. E. Hodges, O. Sy, and W. Alyassini, “MMIC components for mm-wavelength active arrays,” Microwave J., pp. 109–116,Dec. 1989
[10]M. Aust, H. Wang, R. Carandang, K. Tan, C. H. Chen, T. Trinh, R. Esfandiari, and H. C. Yen, “GaAs monolithic components development for Q-band phased array application,” in IEEE MTT-S Int. Microwave Symp. Dig, Albuquerque, NM, June 1992, pp. 703–706
[11]D. Kang, J. Kim, B. Min, and G. M. Rebeiz, “Single and four-element ka-band transmit/receive phased-array silicon RFICs With 5-bit amplitude and phase control,” IEEE Trans. Microw. Theory Tech., vol. 57, no. 12,pp. 3534–3543, Dec. 2009.
[12]J. Lange, “Interdigitated stripline quadrature hybrid,” IEEE Trans. Microw. Theory Tech.(Corresp.), vol. MTT-17, pp. 1150-1151, Dec. 1969.
[13]D. M. Pozar, Microwave Engineering, 2nd Ed. NEW YORK: Wiley 1998.
[14]H. Howe, Stripline Circuit Design, Artech House, Dedham, Mass., 1974.
[15]K. C. Gupta, R. Garg, and I. J. Bahl, Microstript Lines and Slot Lines, Artech House, Dedham, Mass., 1979.
第四章
[1]H. Dogan, R. G. Meyer, and A. M. Niknejad, “Analysis and design of RF CMOS attenuators,” IEEE J. Solid-State Circuits, vol. 43, no. 10,pp. 2269–2283, Oct. 2008.
[2]R. Kaunisto, P. Korpi, J. Kiraly, and K. Halonen, “A linear-control wideband CMOS attenuator,” in Proc. IEEE Int. Circuits Syst. Symp., Sydney, Australia, 2001, vol. 4, pp. 458–461.
[3]C. R. Trent, and T. M. Weller, “S-band reflection type variable attenuator,” ”IEEE Microw.Wireless Compon. Lett, vol. 12, no. 7, pp. 243-245, July 2002.
[4]S. Nam, A. E. Ashtiani, C. F. Oztek-Yerli, and I. D. Robertson, “Wideband reflection type MMIC attenuator with constant phase,” Electron. Lett., vol. 34, pp. 91-93, Jan. 1998.
[5]S. M. Daoud and P. N. Shastry, “A Novel wideband MMIC voltage controlled attenuator with a bandpass filter topology,” IEEE Trans. Microw. Theory Tech., vol. 54, no. 6, pp. 2576-2583, June 2006.
[6]B. H. Ku and S. Hong, “6-bit CMOS digital attenuators with low phase variations for X-band phased-array systems,” IEEE Trans. Microw. Theory Tech., vol. 58, no. 7, pp. 1651-1663, July 2010.
[7]J. Lange, “Interdigitated stripline quadrature hybrid,” IEEE Trans. Microw. Theory Tech.(Corresp.), vol. MTT-17, pp. 1150-1151, Dec. 1969.
[8]D. M. Pozar, Microwave Engineering, 2nd Ed. NEW YORK: Wiley 1998.
[9]H. Howe, Stripline Circuit Design, Artech House, Dedham, Mass., 1974.
[10]K. C. Gupta, R. Garg, and I. J. Bahl, Microstript Lines and Slot Lines, Artech House, Dedham, Mass., 1979.