| 研究生: |
陳俐璇 Chen, Li-Hsuan |
|---|---|
| 論文名稱: |
以鎂離子治療暫時性局部腦缺血白鼠之電生理及神經行為之研究 Delayed Treatment with Magnesium Improves Electrophysiological and Neurobehavioral Outcomes in Rats Subjected to Transient Focal Cerebral Ischemia |
| 指導教授: |
張冠諒
Chang, Guan-Liang 李宜堅 Lee, E-Jian |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 醫學工程研究所 Institute of Biomedical Engineering |
| 論文出版年: | 2005 |
| 畢業學年度: | 93 |
| 語文別: | 中文 |
| 論文頁數: | 85 |
| 中文關鍵詞: | 電生理結果 、神經行為結果 、鎂離子 、中風 、局部腦缺血 、神經保護 |
| 外文關鍵詞: | Magnesium, Neurobehavioral outcome, Electrophysiological outcome, Stroke, Neuroprotection, Focal cerebral ischemia |
| 相關次數: | 點閱:106 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在全世界,腦中風是導致死亡與殘障最重要的起因;一般而言,引發一個短暫性局部大腦缺血的狀況,由於興奮性毒素神經傳遞物質的釋放、鈣離子內流入神經元、自由基的產生、脂質過氧化和蛋白質的退變,可能會因而導致不可逆性的細胞損傷及神經行為的功能不良,許多證據指出對於大腦缺血性傷害的發病機制乃因鈣離子經由依賴電位調控的NMDA通道與L及N型電位調控的鈣離子通道內流所致;而在症狀開始後的3小時內,靜脈注射給予血栓溶解劑,是治療急性缺血性腦中風首要有效的治療方針,但是,直到現在血栓溶解劑在腦中風開始後,靜脈內給予大於3小時尚還不被認可,因出血的危險性會隨著時間的增加而增加,然而,大部份病人到達醫院時已經太晚,以致於不能獲得最大的效益,因此,發現其它有效的神經保護藥劑,對於保護缺血的腦部而言則是必需的。
本研究發現Mg2+各種藥理學上的作用可能是有效的,包括:抑制興奮性神經傳遞物質的釋放、阻斷依賴電位調控的NMDA通道與阻擋L及N型電位調控的鈣離子通道,這些機制則會使顱內的小動脈及小靜脈呈現血管擴張現象,而在腦血管擴張後,由於腦血流量的增加,可能會因而減少腦損傷的程度;在此篇研究中,將研究在短暫性局部大腦缺血的模型中,以具神經保護效能之MgSO4劑量(750μmol/Kg)於再灌流的同時進行頸動脈內灌注,看其是否可增進電生理及神經行為的功能;而以臨床上的觀點而言,對於經過治療後的中風病人,其行為功能上的復原比降低腦損傷的程度更為重要。
在材料與方法方面,選用23隻Sprague-Dawley的公鼠,體重在250-300克間,以1-2%的halothane混合於70%的N2O和30%的O2中進行麻醉,由右股動脈插管以計測生理參數,中大腦動脈阻塞手術的過程,則利用頸動脈內塞入縫線之方法,將右中大腦動脈的起始部位阻塞,產生局部缺血(90分鐘)現象,而縫線移除,也就是血液再灌流的開始,於20分鐘內將事前所配製的葯物由頸動脈內灌注入大白鼠體內;另外,用Laser-Doppler flowmetry來監測每側大腦半球SI及SII的局部腦皮質血流量;體感覺誘發電位則是以誘發電位量測系統針對上下肢SI部位進行記錄;而神經行為測試則是以神經學評估系統來做評估;最後,使用TTC染色腦切片再以電腦影像分析系統來量化腦損傷的程度。
從結果顯示出於再灌流後的72小時,由控制組缺血側的上下肢皮質領域所記錄到的體感覺誘發電位P1-N1振幅,降低至原始值的18%及26%;相對而言,以MgSO4治療的大白鼠,其P1-N1振幅則可明顯的提升至24%及40%;另外,MgSO4可改善感覺及運動神經行為上的結果,分別是33%及25%,且也可降低皮質及紋狀體的梗塞體積之大小,分別是40%;總之,在短暫性局部大腦缺血及再灌流後,使用magnesium作延緩治療有助其電生理及神經行為的改善與減少腦損傷的程度。
Cerebral stroke is a leading cause of death and disability worldwide. In general, transient focal cerebral ischemia that occurs during cerebrovascular surgery may result in irreversible cell damage and neurobehavioral dysfunction due to the release of excitotoxic neurotransmitters, influx of calcium ions into neurons, free radical generation, lipid peroxidation, and protein degradation. Much evidence implicates the influx of calcium ions via the N-methyl-D-aspartate (NMDA) receptor complex in the pathogenesis of cerebral ischemic injury. Intravenous thrombolysis within 3 hr after symptoms onset represents the first therapeutical approach that can effectively treat acute ischemic stroke. Until now, thrombolysis has not been approved for intravenous administration >3 hr after stroke onset because the risk of hemorrhage increases with time. However, most patients arrive at the hospital too late to receive the maximum benefit. Thus an effective neuroprotective agent is needed to protect ischemic brain after thrombolytic therapies.
Mg2+ has a variety of pharmacological actions that may be beneficial in the treatment of acute ischemic stroke. Neuroprotective mechanisms of Mg2+ include blockade of L- and N-type voltage-operated calcium channels, inhibition of excitatory neurotransmitter release, and blockade of voltage-dependent NMDA channels. These mechanisms show a dose-dependent vasodilation of intracranial arterioles and venules. Mg2+ may decrease the size of brain infarct due to increase cerebral blood flow after cerebral vasodilation. In the current study, we investigate whether delayed treatment with magnesium sulfate (MgSO4;750μmol/Kg ia) could improve electrophysiology and neurobehavioral function in the transient focal cerebral ischemia model. Improvement of functional outcome is more important than reduced brain damage with regard to stroke patients through treatment.
At 72 hr after the onset of reperfusion, the amplitude of somatosensory evoked potentials (SSEP) recorded from ischemic fore- and hindpaw cortical fields decreased to 18% and 26% of baselines in vehicle-injected rats. Respectively, the amplitude of SSEP recorded from cerebral ischemia rats treated with MgSO4 improved to 24% and 40% of baselines. In addition, MgSO4 improved sensory and motor neurobehavioral outcomes by 33% and 25%, and reduced cortical and striatal infarct sizes by 40%. In conclusion, delayed treatment with magnesium could improve electrophysiology and neurobehavioral outcomes and reduce brain damage after cerebral ischemia-reperfusion.
1.王雅慧 (民90)‧Carboxyfullerene對小鼠大腦局部缺氧之調控‧國立成功大學微生物暨免疫學研究所碩士論文。
2.王志弘 (民93)‧淺談中風的預防‧臺北:行政院衛生署國民健康局。
3.朱復禮 (民81)‧臨床神經醫學‧臺北:合記。
4.呂宗謙 (民88)‧功能性神經解剖學‧臺北:合記。
5.林家樑 (民89)‧「膽固醇」是腦血管疾病的元兇‧臺北:亞洲醫藥網健康生活家。
6.林子淦 (民93)‧你知道缺血性大中風嗎?‧臺北:行政院衛生署國民健康局。
7.吳進安 (民85)‧基礎神經學‧臺北:合記。
8.吳進安、朱復禮 (民71)‧體感覺誘發電位‧臨床醫學,9 (3), 218-223。
9.吳進安、朱復禮 (民73)‧感覺性誘發電位對腦血管疾病之臨床應用‧臨床醫學,14 (5), 669-672。
10.邱浩彰 (民88)‧神經學新知‧臺北:臺灣醫學會。
11.洪惠珍 (民89)‧認識腦中風‧嘉榮醫訊, (35), 1-2。
12.洪敏元、劉良慧、林育娟、何明聰、賴明華 (民91)‧當代生理學‧臺北:華杏。
13.馬大元 (民85)‧最新神經系統解剖學‧臺北:合記。
14.陳仁澤 (民93)‧中風之危險因子‧臺北:行政院衛生署國民健康局。
15.張承能 (民93)‧中風病患的治療與復健‧臺北:行政院衛生署國民健康局。
16.張承能 (民93)‧認識小中風(TIAs;Transient Ischemic Attacks)‧臺北:行政院衛生署國民健康局。
17.楊明杰、余政展、吳佳穎、吳承學、吳孟儒、李威廷、林均一、周昆達、張曜任、莊暘安、黃嘉文、詹東霖、趙又麟、趙勇全 (民87)‧Ganong醫學生理學(1)‧臺北:合記。
18.蔡鳳如 (民91)‧IGF-1促進胚胎發育時期運動神經肌細胞突觸之自發性神經傳導物質釋放之研究‧國立中山大學生物科學系碩士論文。
19.蔡宜殷 (民92)‧以Melatonin治療暫時性局部腦缺血白鼠有助其電生理及神經行為之改善‧國立成功大學醫學工程研究所碩士論文。
20.樓迎統、陳君侃、黃榮棋、王錫五 (民86)‧實用生理學‧臺北:匯華。
21.鄧麗寶 (民84)‧頭部‧於鄧麗寶編著,護理解剖圖 (pp.41-52)‧臺北:華杏。
22.潘震澤、楊志剛、高毓儒、黃娟娟、謝坤叡、袁宗凡、蔡新茂、林春月、梁淑鈴 (民90)‧人體生理學(上)‧臺北:合記。
23.魏玲玲、林秋霞 (民81)‧特定神經系統疾病病人的護理‧於盧美秀編著,內外科護理(上册) (pp.761-883)‧臺北:華杏。
24.國內醫療新聞 (民93)‧92年十大死因統計出爐!每4分3秒就有一人死亡‧秀傳醫療體系:國際厚生數位科技股份有限公司。
25.國內醫療新聞 (民93)‧漫談腦中風‧秀傳醫療體系:國際厚生數位科技股份有限公司。
26.Almers, W. (1990). Exocytosis. Annu. Rev. Physiol., 52, 607-624.
27.Altura, B. T., & Altura, B. M. (1984). Interaction of Mg and K on cerebral vessels-aspects in view of stroke. Review of present status and new findings. Magnesium, 3, 195-211.
28.Buchan, A. M. (1990). Do NMDA antagonists protect against cerebral ischemia: Are clinical trials warranted? Cerebrovasc. Brain Metab. Rev., 2, 1-26.
29.Brann, D. W. (1995). Glutamate: A major excitatory transmitter in neuroendocrine regulation. Neuroendocrinology, 61, 213-225.
30.Blazevich, L. (2004). Voltage-gated calcium channel. Continental United States: Sigma-Aldrich.
31.Bolay, H., & Dalkara, T. (1998). Mechanisms of motor dysfunction after transient MCA occlusion: Persistent transmission failure in cortical synapses is a major determinant. Stroke, 29, 1988-1994.
32.Blair, J. L., Warner, D. S., & Todd, M. M. (1989). Effects of elevated plasma magnesium versus calcium on cerebral ischemic injury in rats. Stroke, 20, 507-512.
33.Burgoyne, R. D., Graham, M. E., & Cambray-Deakin, M. (1993). Neurotrophic effects of NMDA receptor activation on developing cerebellar granule cells. J. Neurocytol., 22, 689-695.
34.Belayev, L., Alonso, O. F., Busto, R., Zhao, W., & Ginsberg, M. D. (1996). Middle cerebral artery occlusion in the rat by intraluminal suture. Neurological and pathological evaluation of an improved model. Stroke, 27, 1616-1623.
35.Behar, T. N., Scott, C. A., Greene, C. L., Wen, X., Smith, S. V., Maric, D., Liu, Q. Y., Colton, C. A., & Barker, J. L. (1999). Glutamate acting at NMDA receptors stimulates embryonic cortical neuronal migration. J. Neurosci., 19, 4449-4461.
36.Conti, F. (1997). Localization of NMDA receptors in the cerebral cortex: A schematic overview. Braz. J. Med. Biol. Res., 30, 555-560.
37.Colon, E. J., & Visser, S. L. (1990). Evoked potential manual: A practical guide to clinical applications. Boston: Nijhoff.
38.Chi, O. Z., Pollak, P., & Weiss, H. R. (1990). Effects of magnesium sulfate and nifedipine on regional cerebral blood flow during middle cerebral artery ligation in the rat. Arch Int. Pharmacodyn. Ther., 304, 196-205.
39.Colwell, C. S., Cepeda, C., Crawford, C., & Levine, M. S. (1998). Postnatal development of glutamate receptor-mediated responses in the neostriatum. Dev. Neurosci., 20, 154-163.
40.Clark, W. M., Rinker, L. G., Lessov, N. S., Hazel, K., Hill, J. K., Stenzel-Poore, M., & Eckenstein, F. (2000). Lack of interleukin-6 expression is not protective against focal central nervous system ischemia. Stroke, 31 (7), 1715-1720.
41.de Courten-Myers, G. M., Myers, R. E., & Schoolfield, L. (1988). Hyper- glycemia enlarges infarct size in cerebrovascular occlusion in cats. Stroke, 19, 623-630.
42.Du, C., Hu, R., Csernansky, C. A., Hsu, C. Y., & Choi, D. W. (1996). Very delayed infarction after mild focal cerebral ischemia: A role for apoptosis? J. Cereb. Blood Flow Metab., 16, 195-201.
43.Dingledine, R., Borges, K., Bowie, D., & Traynelis, S. F. (1999). The glutamate receptor ion channels. The American Society for Pharmacology and Experimental Therapeutics, 51 (1), 7-61.
44.Eduardo, C. J., Armando, G. F., Michel, G. C., Leon, O. S., & Fiebich, B. L. (2004). Wide therapeutic time window for nimesulide neuroprotection in a model of transient focal cerebral ischemia in the rat. Brain Research, 1007, 98-108.
45.Freedman, A. M., Mak, I. T., Stafford, R. E., Dickens, B. F., Cassidy, M. M., Muesing, R. A., & Weglicki, W. B. (1992). Erythrocytes from magnesium-deficient hamsters display an enhanced susceptibility to oxidative stress. Am. J. Physiol., 262, C1371-C1375.
46.Gomez, M. N. (1998). Magnesium and cardiovascular disease. Anesthesiology, 89, 222-240.
47.Guilarte, T. R., & McGlothan, J. L. (1998). Hippocampal NMDA receptor mRNA undergoes subunit-specific changes during developmental lead exposure. Brain Res., 790, 98-107.
48.Hubel, D. H., & Wiesel, T. N. (1970). The period of susceptibility to the physiological effects of unilateral eye closure in kittens. J. Physiol., 206, 419-436.
49.Heath, D. L., & Vink, R. (1999). Optimization of magnesium therapy after severe diffuse axonal brain injury in rats. J. Pharmacol. Exp. Ther., 288, 1311-1316.
50.Hamilton, M. G., Tranmer, B. I., & Auer, R. N. (1995). Insulin reduction of cerebral infarction due to transient focal ischemia. J. Neurosurg., 82, 262-268.
51.Hertz, L., Dringen, R., Schausboe, A., & Robinson, S. R. (1999). Astrocytes: Glutamate producers for neurons. J. Neurosci. Res., 57, 417-428.
52.Hurst, R. S., Cepeda, C., Shumate, L. W., & Levine, M. S. (2001). Delayed postnatal development of NMDA receptor function in medium-sized neurons of the rat striatum. Dev. Neurosci., 23, 122-134.
53.Hu, Y., Luk, K. D. K., Lu, W. W., Holmes, A., & Leong, J. C. Y. (2001). Prevention of spinal cord injury with time-frequency analysis of evoked potentials: An experimental study. J. Neurology Neurosurgery and Psychiatry, 71 (6), 732-740.
54.Haberny, K. A., Paule, M. G., Scallet, A. C., Sistare, F. D., Lester, D. S., Hanig, J. P., & Slikker, W. (2002). Ontogeny of the N-methyl-D- aspartate (NMDA) receptor system and susceptibility to neurotoxicity. Toxicological Sciences, 68, 9-17.
55.Iseri, L. T., & French, J. H. (1984). Magnesium: Nature,s physiologic calcium blocker. Am. Heart J., 108, 188-193.
56.Izumi, Y., Roussel, S., Pinard, E., & Seylaz, J. (1991). Reduction of infarct volume by magnesium after middle cerebral artery occlusion in rats. J. Cereb. Blood Flow Metab., 11 (6), 1025-1030.
57.Ikonomidou, C., Bittigau, P., Koch, C., Genz, K., Hoerster, F., Felderhoff-Mueser, U., Tenkova, T., Dikranian, K., & Olney, J. W. (2001). Neurotransmitters and apoptosis in the developing brain. Biochem. Pharmacol., 62, 401-405.
58.Ikonomidou, C., Bosch, F., Miksa, M., Bittigau, P., Vockler, J., Dikranian, K., Tenkova, T. I., Stefovska, V., Turski, L., & Olney, J. W. (1999). Blockade of NMDA receptors and apoptotic neurodegeneration in the developing brain. Science, 283, 70-74.
59.Jones, S. W. (1998). Overview of voltage-dependent calcium channels. J. Bioenerg. Biomembr., 30, 299-312.
60.Kato, K., Li, S. T., & Zorumski, C. F. (1999). Modulation of long-term potentiation induction in the hippocampus by N-methyl-D-aspartate- mediated presynaptic inhibition. Neuroscience, 92, 1261-1272.
61.Kemp, P. A., Gardiner, S. M., Bennett, T., & Rubin, P. C. (1993). Magnesium sulphate reverses the carotid vasoconstriction caused by endothelin-I, angiotensin II and neuropeptide-Y, but not that caused by NG-nitro-L- arginine methyl ester, in conscious rats. Clin. Sci., 85 (2), 175-181.
62.Lalonde, R., & Joyal, C. C. (1993). Effects of ketamine and L-glutamic acid diethyl ester on spatial and nonspatial learning tasks in rats. Pharmacol. Biochem. Behav., 44, 539-545.
63.Lin, J. Y., Chung, S. Y., Lin, M. C., & Cheng, F. C. (2002). Effects of magnesium sulfate on energy metabolites and glutamate in the cortex during focal cerebral ischemia and reperfusion in the gerbil monitored by a dual-probe microdialysis technique. Life Sci., 71, 803-811.
64.Lee, E. J., Ayoub, I. A., Harris, F. B., Hassan, M., Ogilvy, C. S., & Maynard, K. I. (1999). Mexiletine and magnesium independently, but not combined, protect against permanent focal cerebral ischemia in Wistar rats. J. Neurosci. Res., 58 (3), 442-448.
65.Lee, E. J., Chen, H. Y., Wu, T. S., Chen, T. Y., Ayoub, I. A., & Maynard, K. I. (2002). Acute administration of Ginkgo biloba extract (EGb 761) affords neuroprotection against permanent and transient focal cerebral ischemia in Sprague-Dawley rats. J. Neurosci. Res., 68, 636-645.
66.Lee E. J., Lee, M. Y., Chen, H. Y., Hsu, Y. S., Wu, T. S., Chen, S. T., & Chang, G. L. (2004). Melatonin attenuates gray and white matter damage in a mouse model of transient focal cerebral ischemia. Journal of Pineal Research, 37 (4), 1-11.
67.Lee, E. J., Wu, T. S., Lee, M. Y., Chen, T. Y., Tsai, Y. Y., Chuang, J. I., & Chang, G. L. (2004). Delayed treatment with melatonin enhances electrophysiological recovery following transient focal cerebral ischemia in rats. Journal of Pineal Research, 36, 33-42.
68.Meldrum, B. S. (1995). Cytoprotective therapies in stroke. Curr. Opin. Neurol., 8, 15-23.
69.Muir, K. W. (2001). Magnesium for neuroprotection in ischaemic stroke: Rationale for use and evidence of effectiveness. CNS Drugs, 15, 921-930.
70.McDonald, J. W., & Johnston, M. V. (1990). Physiological and pathophysiological roles of excitatory amino acids during central nervous system development. Brain Res. Brain Res. Rev., 15, 41-70.
71.McDonald, J. W., & Johnston, M. V. (1993). Excitatory amino acid neurotoxicity in the developing brain. NIDA Res. Monogr., 133, 185-205.
72.Mayer, M. L., Westbrook, G. L., & Guthrie, P. B. (1984). Voltage-dependent block by Mg2+ of NMDA responses in spinal cord neurones. Nature, 309, 261-263.
73.Memezawa, H., Minamisawa, H., Smith, M. L., & Siesjo, B. K.(1992). Ischemic penumbra in a model of reversible middle cerebral artery occlusion in the rat. Exp. Brain Res., 89 (1), 67-78.
74.Mori, H., Masaki, H., Yamakura, T., & Mishina, M. (1992). Identification by mutagenesis of a Mg2+-block site of the NMDA receptor channel. Nature, 358 (6388), 673-675.
75.Muir, K. W., Lees, K. R., Ford, I., & Davis, S. (2004). Magnesium for acute stroke (intravenous magnesium efficacy in stroke trial): Randomised controlled trial. Lancet, 363 (9407), 439-445.
76.Marinov, M. B., Harbaugh, K. S., Hoopes, P. J., Pikus, H. J., & Harbaugh, R. E. (1996). Neuroprotective effects of preischemia intraarterial magnesium sulfate in reversible focal cerebral ischemia. J. Neurosurg., 85, 117-124.
77.Muir, J. K., Raghupathi, R., Emery, D. L., Bareyre, F. M., & McIntosh, T. K. (1999). Postinjury magnesium treatment attenuates traumatic brain injury-induced cortical induction of p53 mRNA in rats. Exp. Neurol., 159 (2), 584-593.
78.McCracken, E., Fowler, J. H., Dewar, D., Morrison, S., & McCulloch, J. (2002). Grey matter and white matter ischemic damage is reduced by the competitive AMPA receptor antagonist, SPD 502. J. Cereb. Blood Flow Metab., 22 (9), 1090-1097.
79.Nedergaard, M. (1988). Mechanisms of brain damage in focal cerebral ischemia. Acta. Neurol. Scand., 77, 81-101.
80.Nakano, S., Kogure, K., & Fujikura, H. (1990). Ischemia-induced slowly progressive neuronal damage in the rat brain. Neuroscience, 38, 115-124.
81.Nishio, A., Gebrewold, A., Altura, B. T., & Altura, B. M. (1989). Comparative vasodilator effects of magnesium salts on rat mesenteric arterioles and venules. Arch Int. Pharmacodyn. Ther., 298, 139-163.
82.Nishijima, M. K., Koehler, R. C., Hurn, P. D., Eleff, S. M., Norris, S., Jacobus, W. E., & Traystman, R. J. (1989). Postischemic recovery rate of cerebral ATP, phosphocreatine, pH, and evoked potentials. Am. J. Physiol., 257, H1860-H1870.
83.Olney, J. W., Farber, N. B, Wozniak, D. F., Jevtovik-Todorovik, V., & Ikonomidou, C. (2000). Environmental agents that have the potential to trigger massive apoptotic neurodegeneration in the developing brain. Environ. Health Perspect., 108 (3), 383-388.
84.Paxinos, G., & Watson, C. (1982). The rat brain in stereotaxic coordinates. New York: Academic Press.
85.Popke, E. J., Allen, R. R., Pearson, E. C., Hammond, T. C., & Paule, M. G. (2001). Differential effects of two NMDA receptor antagonists on cognitive-behavioral performance in young non-human primates: I. Neurotoxicol. Teratol., 23, 319-332.
86.Popke, E. J., Allen, R. R., Pearson, E. C., Hammond, T. C., & Paule, M. G. (2001). Differential effects of two NMDA receptor antagonists on cognitive-behavioral performance in young non-human primates: II. Neurotoxicol. Teratol., 23, 333-347.
87.Pohl, D., Bittigau, P., Ishimaru, M. J., Stadthaus, D., Hubner, C., Olney, J. W., Turski, L., & Ikonomidou, C. (1999). N-methyl-D-aspartate antagonists and apoptotic cell death triggered by head trauma in developing rat brain. Proc. Natl. Acad. Sci. U.S.A., 96, 2508-2513.
88.Quinlan, E. M., Olstein, D. H., & Bear, M. F. (1999). Bidirectional, experience-dependent regulation of N-methyl-D-aspartate receptor subunit composition in the rat visual cortex during postnatal development. Proc. Natl. Acad. Sci. U.S.A., 96, 12876-12880.
89.Quinlan, E. M., Philpot, B. D., Huganir, R. L., & Bear, M. F. (1999). Rapid, experience-dependent expression of synaptic NMDA receptors in visual cortex in vivo. Nat. Neuro., 2, 352-357.
90.Sheng, M. (2001). Molecular organization of the postsynaptic specialization. Proc. Natl. Acad. Sci. U.S.A., 98, 7058-7061.
91.Scheetz, A. J., & Constantine-Paton, M. (1994). Modulation of NMDA receptor function: Implications for vertebrate neural development. FASEB J., 8, 745-752.
92.Sakatani, K., Iizuka, H., & Young, W. (1990). Somatosensory evoked potentials in rat cerebral cortex before and after middle cerebral artery occlusion. Stroke, 21 (1), 124-132.
93.Simon, D. K., Prusky, G. T., O'Leary, D. D. M., & Constantine-Paton, M. (1992). N-methyl-D-aspartate receptor antagonists disrupt the formation of a mammalian neural map. Proc. Natl. Acad. Sci. U.S.A., 89, 10593-10597.
94.Saver, J. L., Kidwell, C., Eckstein, M., & Starkman, S. (2004). Prehospital neuroprotective therapy for acute stroke: Results of the field administration of stroke therapy-magnesium (FAST-MAG) pilot trial. Stroke, 35 (5), e106-e108.
95.Siegel, G. J., Agranoff, B. W., Albers, R. W., Fisher, S. K., & Uhler, M. D. (1999). Basic neurochemistry. U.S.A.: Lippincott Williams and Wilkins.
96.Trudeau, L. E., & Castellucci, V. F. (1993). Excitatory amino acid neurotransmission at sensory-motor and interneuronal synapses of Aplysia californica. J. Neurophysiol., 70, 1221-1230.
97.van der Hel, W. S., van den Bergh, W. M., Nicolay, K., Tulleken, K. A., & Dijkhuizen, R. M. (1998). Suppression of cortical spreading depressions after magnesium treatment in the rat. Neuroreport, 9 (10), 2179-2182.
98.Wiesel, T. N. (1999). Early explorations of the development and plasticity of the visual cortex: A personal view. J. Neurobiol., 41, 7-9.
99.Whishaw, I. Q., O'Connor, W. T., & Dunnett, S. B. (1986). The contributions of motor cortex, nigrostriatal dopamine and caudate-putamen to skilled forelimb use in the rat. Brain, 109, 805-843.
100.Wolf, G., Keilhoff, G., Fischer, S., & Hass, P. (1990). Subcutaneously applied magnesium protects reliably against quinolinate-induced N-methyl- D-aspartate (NMDA)-mediated neurodegeneration and convulsions in rats: Are there therapeutical implications? Neurosci. Lett., 117 (1-2), 207-211.
101.Watanabe, M., Inoue, Y., Sakimura, K., & Mishina, M. (1992). Developmental changes in distribution of NMDA receptor channel-subunit mRNAs. Neuroreport, 3, 1138-1140.
102.Yeleswaram, K., McLaughlin, L. G., Knipe, J. O., & Schabdach, D. (1997). Pharmacokinetics and oral bioavailability of exogenous melatonin in preclinical animal models and clinical implications. J. Pineal Res., 22, 45-51.
103.Yang, Y., Li, Q., Ahmad, F., & Shuaib, A. (2000). Survival and histological evaluation of therapeutic window of post-ischemia treatment with magnesium sulfate in embolic stroke model of rat. Neurosci. Lett., 285, 119-122.
104.Yam, P. S., Dunn, L. T., Graham, D. I., Dewar, D., & McCulloch, J. (2000). NMDA receptor blockade fails to alter axonal injury in focal cerebral ischemia. J. Cereb. Blood Flow Metab., 20 (5), 772-779.